Computer Science II — CSci 1200
Supplementary Material on Operators and Friends

This set of notes and examples contains material on operators and friends, which has
been taught as a lecture in previous semesters. This semester we will not cover this in
lecture, although you may find some of the material useful in your projects. Material from
this lecture that is also covered in other lectures (e.g. assignment operators) is fair game
for tests.

Review of Non-Member Function Operators

e We have already written our own operators, especially operator<, as non-member
functions.

— We used this operator to sort objects and to create our own keys for maps.

e Recall the example of the Name.

class Name {
public:
Name(string const& first, string const& last)
first_(first), last_(last) {}

const string& first() const { return first_; }
const string& last() const { return last_; 7}

private:
string first_;
string last_;

};
e operator< applied to the Name class behaves as

Name n1("Boston", "RedSox");
Name n2("StLouis", "Cardinals");
if (n1 < n2)
cout << "It’s the American League champion.\n";

e When this operator is not a member function of the Name class, the expressionnl < n2
is translated by the compiler into the function call

operator< (nl, n2);
e This is why we wrote the operator as

bool operator< (Name const& left, Name const& right)
{
return left.last() < right.last() ||
(left.last() == right.last() && left.first() < right.first());

e The operator does not need to be a member function because it can access all of the
information it needs through the public interface to the Name class.

Operators As Member Functions

e Operators can also be written as member functions. The syntax is a bit different, so
we need to be careful.

o Let’s rewrite operator< as a member function of the Name class:

class Name {
public:
Name (string const& first, string const& last)
first_(first), last_(last) {}

const string& first() const { return first_; }
const string& last() const { return last_; }

bool operator< (Name const& right) const;
private:

string first_;
string last_;

s
e Then in the Name.cpp file (or whatever we call it), the operator (function) would be
defined as:
bool Name :: operator< (Name const& right) const
{
return last_ < right.last_ ||
(last_ == right.last_ &% first_ < right.first_);
}

e The expression n1 < n2 is translated by the compiler into
nl.operator< (n2);

— This shows that the version of operator< called is the member function of ni,
since nl appears on the left-hand side of the operator.

— Observe that the function called now has only one argument!

e There are several important properties of the implementation of operator< as a mem-
ber function:

— It is within the scope of class Name, so private member variables can be accessed
directly.

— The member variables of n1, whose member function is actually called, are ref-
erenced by just using their names.

— The member variables of n2 are accessed using the right. qualifier, since right
is the parameter that n2 is passed to.

— The member function is const, which means that n1 will not (can not) be
changed by the function.

Complex Numbers — A Brief Review

We use implementation of a complex number class to to explore operators in more depth,
showing how to make our own classes act and feel like built-in types.

e Complex numbers take the form
z =a+ b,

where 1 = v—1 and a and b are real.

— a is called the real part,

— b is called the imaginary part.
o If w=c+ di, then

—w+z=(a+c)+ (b+d)i,
—w—2z=(a—c)+ (b—d)i, and
— w X z = (ac — bd) + (ad + bc)i

e The magnitude of a complex number is va? + b2

The Complex Class

A good start on a Complex class is provided in the attachment to the notes.

— Three files are provided: Complex.h, Complex.cpp, and complexMain.cpp.

The class has two private member variables to represent the real and imaginary parts.

Several constructors have been defined.

There are functions to set the values of the private member variables and to access
these values.

Several different operators have been provided already

Some of these are member functions, some are non-member functions, and some are
special non-member functions called “friend” functions.

We will discuss the following in turn:

Arithmetic operators

Assignment operators

Friend functions and operators as friend functions

Stream operators

Binary Arithmetic Operators

e operator+ is defined as a member function, while operator- is defined as a non-
member function

e Just like in the Name class, this difference determines how they access the contents of
the Complex objects the work on:

— operator+ accesses contents directly

— operator- accesses contents indirectly, through public member functions.
e This difference also determines how the compiler calls the functions:

— z + w becomes z.operator+ (w)

— z - w becomes operator- (z, w)

e Both return Complex objects, so both must call Complex constructors to create these
objects.

— Calling constructors for Complex objects inside functions, especially member
functions that work on Complex objects, seems somewhat counter-intuitive at
first, but it is common practice!

Exercises

1. Write operator* for Complex numbers as a member function of the Complex class.
Show the additions to Complex.h and Complex.cpp.

2. Write operator* for Complex numbers as an ordinary function instead of as a member
function of the Complex class. Show the additions to Complex.h and Complex.cpp.

Driver Main Program

This is the file complexMain. cpp
e Note how it exercises every member function, sometimes multiple times.

e Such driver programs are good for testing the classes you write.

Assignment Operators

e The assignment operator, used in the main program as
zl = z2;
becomes a function call

z1.operator=(z2);

e Cascaded assignments like
zl = z2 = z3;
are really
z1l = (22 = 23);
which becomes
zl.operator= (z2.operator= (z3));

Studying these helps to explain how to write the assignment operator, usually as a
member function.

e The argument — the right side of the operator — is passed by constant reference.

o Its values are used to change the contents of the left side of the operator, which is the
object whose member function is called.

e A reference to this object is returned, allowing a subsequent call to operator= —-
z1’s operator= in the example above.

— The identifier this is reserved as a pointer inside class scope to the object whose
member function is called. Therefore, *this is a a reference to this object.

e The fact that operator= returns a reference allows us to write code of the form

(z1 = z2).real();

Exercise

Write an operator+= as a member function of the Complex class. To do so, you must
combine what you learned about operator= and operator+. In particular, the new operator
must return a reference, *this.

Returning Objects vs. Returning References to Objects

e When you create a new object inside an operator or member function, you must
simply return it. This is why the return types of operator+ and operator- are both
Complex.

— Technically, this copies the contents of the locally-created new objects into yet
another object — the object returned. This places the returned object outside
of the scope of the function.

— Good compilers recognize this and avoid the work of creating an extra object.

e When you change an existing object inside an operator and need to return that object,
you must return a reference to that object. This is why the return types of operator=
and operator+= are both Complex&. This avoids creation of a new object.

e A common error made by beginners (and some non-beginners!) is attempting to
return a reference to a locally created object!

Friend classes

We’re now going to shift gears slightly and discuss friend classes and functions. This will
lead to the third method of writing an operator.

e One class (call it Foo) can designate another class (call it Bar) to be a friend.

e This allows member functions in class Bar to access the private member functions and
variables of a Foo object as though they were public.

e This must be done in the public area of the declaration of Foo, i.e.

class Foo {
public:
friend class Bar;

};

e Note that Foo is giving friendship (access to its private contents) rather than Bar
claiming it.

— Think about what might happen if Bar really could claim it!

e Friendship is often used for closely related (interdependent) classes.

Friend Functions

One class (call it Foo) can designate a specific function (call it £1) to be a friend. Within
the scope of the definition of £1, private member functions and variables of Foo objects can
be accessed directly, as though they were public.

e The most common example of this is operators, and especially stream operators. We
will proceed to an example of this shortly.

e Note that stream operators can not be members; they must be friends. Reasons for
this will be explained later.
Friend Operators

Let’s re-write operator- as a friend function.

e The declaration is moved from outside the class declaration to inside it, and the
keyword friend is added to the front

friend Complex operator- (Complex const& lhs,
Complex const& rhs);

— The declaration is moved because a class must give friendship inside its declara-
tion.

— Only one declaration is needed, so the operator declaration inside the class dec-
laration suffices

e The operator definition inside Complex.cpp becomes

Complex operator- (Complex const& lhs, Complex const& rhs)

{
return Complex(lhs.real_ + rhs.real_,
lhs.imag_ + rhs.imag_);

Notice that because it is a friend, it can access private member variables directly, just
as though it were within class scope.

Stream Operators

The operators >> and << are defined for the Complex class.
e These are binary operators.

e Recall that the consecutive calls to the << operator, such as

cout << "z3 = " << z3 << endl;
are really
((cout << "z3 = ") << z3) << endl;

e Each application of the operator returns an ostream object so that the next applica-
tion can occur.

e A notation like
cout << z3
is really
operator<< (cout, z3)
e To make this a member function, it would have to be a member function of the
ostream class because this is the first argument. Hence, we can’t make it a member

function of the complex class. This is why the stream operators are never member
functions.

e They could be either friend functions or ordinary non-member functions.

— Ordinary non-member functions should be used if the operators are able to do
their work in building up the object through the public class interface!!

— Friend functions must be used otherwise.

e We've written one stream operator as a friend and one as an ordinary non-member
function for the Complex class.

Summary of Operator Overloading

e Many operators can be overloaded, including operators we haven’t discussed, such as

operator++
operator--
operator []
operator ()

Yes, we can even overload the function call operator!

e In fact, we can overload 42 different operators. There are only 5 operators can not be
overloaded!

e The most important syntactic rule is that overloading can never change the number
of arguments or the form of an operator. The only exception to this is the function
call operator, which already has a variable number of arguments.

e There are three different ways to overload an operator:

— Member function
— Non-member function
— Friend function
When there is a choice as to whether an operator should be a member, a non-member,

or a friend, skilled programmers disagree about which is better. My preference is non-
member first, then member, then friend.

e The most important rule for clean class design involving operators is to NEVER
change the intuitive meaning of an operator. The whole point of operators is
lost if you do.

— One (bad) example would be defining the increment operator on a Complex
number.

