Computer Science II — CSci 1200
Lab 10
Stacks and Queues

Introduction to Stacks and Queues

Stacks and queues are very simple sequence containers in which items are
only added and removed from the end. In a stack, all work is done on just
one end, called the top. Hence, when an item is removed, it will be the item
most recently added. As a result, a stack is called a LIFO structure, for
“Last In First Out”. In a queue, items are added to the end, usually called
the rear or back, and removed from the other end, usually called the front.
Hence, when an item is removed it will be the item that has been in the
queue longer than any other item currently in the queue. As a result, a queue
is called a FIFO structure, for “First In First Out”. A fundamental property
distinguishing stacks and queues from other containers is that items in the
middle of the sequence may not be accessed or removed. One effect
of this is than neither stacks nor queues have iterators.

Stacks and queues are interesting because their simple functionality pro-
vides an appropriate model for many common operations. Here are some
examples:

e The management of memory associated with function calls uses a
stack. Each function call causes the creation of a “frame” for the
new function, including space for parameters and local variables. This
frame is “pushed” onto the memory stack at the start of operations
for the function. When a function ends, this frame is “popped” off
the memory stack, and the previous function, whose memory is now
on the top of the stack, resumes its execution.

e The allocation of computing resources, including the CPU, printers
and communication channels, is often based on the FIFO nature of
a queue. Certainly, these allocation methods are more sophisticated
than purely FIFO, but FIFO is the starting idea.

A simple example will help illustrate further the use of a stack. The
goal is to determine whether or not an expression has a balanced set of
parentheses. Here the term parentheses is meant to include the characters
O, 0,)L), Y. We use a stack of chars. Each time an “open”
parenthesis char — ’(’, ’[’, '{’ — is read in the input, the char is pushed

) ? 9

onto the stack. Every time a “close” parenthesis — ’)’, ’]’, '}’ — is read in
the input, the top char of the stacked is checked:

o If the stack is empty, the parentheses are unbalanced, so an error has
occurred.

e If the top char is the matching “open” parenthesis char — e.g. ’(’ on
top of the stack when ")’ is read, etc. — there is a correct match of
parentheses. In this case, the top char is popped off the stack, and
both it and the input char are discarded (no longer considered).

e If the top char is not the matching “open” parenthesis — e.g. a ’(’ is on
top of the stack when a '}’ is read — then a error has been detected.

This process of reading chars and doing the outlined push / comparison /
pop operations continues until an error is found or until there is no more
input associated with the expression. If the stack is not empty at the end of
the input, a mismatch error has also occurred — there aren’t enough closing
parentheses. To fully understand the foregoing, try a few examples yourself.

Stacks and Queues and the Standard Library

Stacks and queues are implemented in the standard library as templated
containers. The include files are just called stack and queue, as in

#include <stack>
#include <queue>

The definition of stack and queue objects is pretty much what you might
guess, e.g.

std: :stack<int> s;
std: :queue<char> q;

Figures 1 and 2 summarize the public interfaces to stack and queue objects.
These summaries are taken from

http://www.sgi.com/tech/stl/stack.html
and
http://www.sgi.com/tech/stl/queue.html

Interestingly, these classes are implemented in terms of other standard li-
brary containers rather than being implemented “from scratch”. We’'ll ex-
plore this issue in the checkpoints below.

| Member || Description |

value_type The type of object stored in the stack. This is the same as T and
Segquence: :value_type.

|Size_t}'PB ||An unsigned integral type. This 18 the same as Sequence::size_type. |

bool empty() const ||Returns true if the stack contains no elements, and false otherwise. s.empty() is
equivalentto s.size() == 0.

size_type size() Returns the number of elements contained in the stack.

const

value_type& top() Returns a mutable reference to the element at the top of the stack. Precondition: empty ()
IS false.

const value type& Returns a const reference to the element at the top of the stack. Precondition: empty () is
top() const

false.
void push|const Inserts x at the top of the stack. Postconditions: size () will be incremented by 1, and
value_type& x) top () will be equal to x.
void pop() Removes the element at the top of the stack. [3] Precondition: empty() Is false.

Postcondition: size () will be decremented by 1.

bool Compares two stacks for equality. Two stacks are equal if they contain the same number
cparator=={const of elements and if they are equal element-by-element. This is a global function, not a

tacks & .
stacikh, cons member function.
stack&)

bool operater<(const|[[.exicographical ordering of two stacks. This is a global function, not a member function.
stack&, const

stacks&)

Figure 1: Operations on a std: :stack.

Files to Download

Before proceeding to the lab checkpoints, download two files from the course
web site:

http://www.cs.rpi.edu/academics/courses/spring07/cs2/lab10/cs2stack.h
http://www.cs.rpi.edu/academics/courses/spring07/cs2/1lab10/cs2queue.h

After doing so, turn off your network connections.

Checkpoints

1. Write a program that uses a stack and a queue to determine if the al-
phabetic characters in a line of input form a palindrome. The program
must read in the characters from cin one at a time until encounter-
ing the *\n’ char (use cin.get(c) rather than cin >> c), convert
all alphabetic chars to lower case, and store the letters in a stack or
a queue or both. After the line of input has been read, the program

Member

Description

value_type

The type of object stored in the gqueue. This is the same as T and sequence: :value_type.

size_type

An unsigned integral type. This is the same as Sequence: :size_type.

bool empty() const

Returns true if the gueue contains no elements, and false otherwise. 0. empty () is equivalent
0 Q.size() == 0.

size_ type size()
const

Returns the number of elements contained in the gqueue.

value_ type& front()

Returns a mutable reference to the element at the front of the queue, that is. the element least
recently inserted. Precondition: empty () IS false.

const value_ types
front({) const

Returns a const reference to the element at the front of the queue, that is. the element least recently
inserted. Precondition: empty() IS false.

wvalue_ type& back()

Returns a mutable reference to the element at the back of the queue, that is, the element most
recently inserted. Precondition: empty () iS false.

const value types
back() const

Returns a const reference to the element at the back of the queue, that is, the element most recently
inserted. Precondition: empty () IS false.

woid push(const
value_type& x)

Inserts x at the back of the queue. Postconditions: size () will be incremented by 1, and back()
will be equal to x.

vold pop()

Removes the element at the front of the queue. [3] Precondition: empty () IS false.
Postcondition: size () will be decremented by 1.

bool operator==(const
queue&, const gueues)

Compares two queues for equality. Two queues are equal if they contain the same number of
elements and if they are equal element-by-clement. This is a global function, not a member
function.

bool operator<|const
queue&, const gueues)

Lexicographical ordering of two queues. This is a global function, not a member function.

Figure 2: Operations on a std: :queue.

must empty the container(s) used, determine if the line is a palindrome
while doing so, and output an appropriate message.

The downloaded file cs2stack.h contains a partial implementation of

the stack in terms of a vector. Complete this implementation and write
a short main program to test it. Be sure to test all member functions.
You should keep the implementation entirely inside cs2stack.h and
you are welcome to inline functions.

