Computer Science II — CSci 1200

Lab 11
Hash Table Implementation

Introduction

The hash table implementation from Lecture 20 uses a vector of lists. Dur-
ing the process of automatically resizing the table, a significant amount of
copying and re-allocation occurs, most of it hidden inside the functionality
of the list and vector classes. An alternative technique is to use our own
linked list implementation. That way we can ensure that minimal copying
and no reallocation (other than resizing the m_table vector) occurs during
resize_table. Lab 11 explores this implementation.
Download the files:

http://www.cs.rpi.edu/academics/courses/spring07/cs2/labl1/hash_set.h
http://www.cs.rpi.edu/academics/courses/spring07/cs2/labll/test_hash_set.cpp

Then, turn off all network connections.
Examine the code in hash_set.h and test_hash_set.cpp. You will
notice several changes over the version covered in lecture.

e A HashNode is a declared inside the hash_set class. This node is
doubly-linked, meaning that both prev and next pointers are used. It
also includes a caching of the computed hash function value so that
this need not be recomputed during the resize_table function.

e The iterator class, also declared inside the hash_set class, now in-
cludes a HashNode pointer instead of a list iterator.

e operator—-- is not provided — mostly for simplicity, although the
(seemingly) random ordering of keys implies that moving in both di-
rections is not particularly necessary.

You should also examine the test main program.
Several functions in hash_set.h have not been implemented. These
should be implemented as part of the checkpoints of this lab.

Checkpoints

1. Implement the insert function, ignoring, for now, the call to the
resize_table function. This function should implement a linked-list



insertion (at the front of the list is fine) once the correct list has been
found (using the hash function) and it has been determined that the
key value is not already in the list. The function should store the hash
value (not the index) computed by the hash function in the HashNode.
The function should increment the size counter and it should return
the appropriate iteriator/bool pair.

. Implement and test the begin() function of the hash_set class and
the next () function of the iterator class. Note that when the hash_set
is empty, begin() should return the end() iterator, and when next
runs out of values in the hash table it should return the equivalent of
the end () iterator. Code in the main function should be uncommented
to test this function.

. Implement and test the erase and resize_table functions. The
resize_table function should reuse the existing HashNode and must
include NO delete and new operations. Code in the main function
should be uncommented to test this function.



