
Computer Science II — CSci 1200
Lab 2, C++ Classes

Overview

This lab explores defining a relatively simple C++ class. Having the notes from Lecture 3
handy, especially the example of the Date class, will make this lab much easier. Still, there
is a lot to do in this lab, so please work efficiently.

The class you will implement is called Time. It represents all possible times in a 24-hour
period, including hours, minutes and seconds. An immediate representation issue is how to
handle morning (am) and afternoon (pm) times. We could have a separate bool indicating
whether the time is am or pm. It is easier, however, to represent the hours in military time.
This means that the hours of the day are numbered from 0 to 23, with 13 being 1 pm, 14
being 2 pm, etc.

Checkpoints

1. In the first checkpoint you will get started by implementing the initial class design,
several member functions, and a “driver” main program. Most of the following instruc-
tions are built around use of Visual Studio. If you are not working in Visual Studio,
most of the steps are easily adapted to your environment; additional instructions are
provided for use of the g++ compiler where necessary.

(a) If you are working in Visual Studio, create a new project. Eventually you will
create three files within the project. These files will be called Time.h, Time.cpp
and main.cpp.

(b) Begin work on Time.h. Create this file by selecting the “Add New Item...” option
in the Project Menu (or use Ctrl+Shift+A). Select which type of new file you
want to add (in this case a Header file) and give it the name Time. You do not
need to include the extension (in this case .h) in the name because it will be
added for you. Adding the extension though will have the same effect. (Aside:
when there is more than one project in the Solution you need to make sure that
the correct project is highlighted in the Solution Explorer before carrying out the
above.) Now click OK. Within the file, declare a class called Time. Follow the
form and syntax of the Date class which was distributed during lecture. Read
the syntax carefully (such as the semi-colon at the end of the class declaration).
Add private member variables for the hour, minute and second. In the public
area of the class, declare two constructors: one, the default constructor, should
initialize each of the member variables to 0; the other, having three arguments,
accepts initial values for the hour, minute and second as function call arguments.
Declare member functions to access the values of the hour, the minute and the
second (three different member functions). It will be crucial for Checkpoint 3
to make these const. (Recall: a const member function can not change the
member variables.)

(c) Switch to working on main.cpp. Create a new file within your project, as above.
Be sure to add code to #include Time.h in addition to including iostream.
(Warning: the syntax of the include statement is different — see the Date
example.) Have the main program create two Time objects, one using each



constructor. Show use of the functions that access the values of hour, minute
and second by printing the two times.

(d) Switch to working on Time.cpp. Create a new file within your project as above.
Don’t forget to add the line to #include Time.h. Implement the constructors
and member functions.

(e) Now, compile your program and remove errors. Here’s where the difference
between compiling and linking matters.
For Visual Studio users, you can compile each of the two .cpp files individually
(the .h file isn’t compiled separately) by typing Ctrl-F7 when the pane containing
that file is active. This will allow you to see and remove compiler errors for each
file individually. (Note that errors caused by the code in the .h file, Time.h will
appear when compiling either .cpp file.) You can also compile and link multiple
files at once using Build/Build project name. You will have to do this even after
compiling each .cpp file individually because the Ctrl-F7 command does not link
to create an executable program.
When compiling using g++ on the command line, the lines

g++ -c main.cpp

and

g++ -c Time.cpp

compile the source code to create two object code files called main.o and Time.o
separately. The -c means “compile only”. Compiler errors will appear at this
point. If there are errors in main.cpp (resp. Time.cpp), then the files main.o
(resp. Time.o) will not be created. Once you have driven out all of the compiler
errors, you can “link” the program using the line

g++ main.o Time.o -o time_test

to create the executable called time test. If you had not defined all of the
necessary member functions in the Time class, then you would see “linking”
errors at this point. You can combine all three command lines by writing

g++ main.cpp Time.cpp -o time_test

This will not create the intermediate .o files and will only proceed to the linking
step if the two files compile cleanly.

(f) To complete this checkpoint, you must

i. Show compilation of the program using g++, with all compiler errors re-
moved. (This is the last time we will require use of g++ during a lab.)

ii. Demonstrate correct execution of your program.

2. Create and test a few more member functions. This will require modifications to all
three of your files.

• setHour, setMinute, setSecond. Each should take a single integer argument
and change the appropriate member variable. For now, do not worry about illegal
values of these variables (such as setting the hour to 25 or the minute to -15).
Assume whoever calls the functions does the right thing. In general, this is a
bad assumption, but we will not worry about it here.

2



• PrintAmPm prints time in terms of am or pm, so that 13:24:39 would be output
as 1:24:39 pm. This member function should have no arguments. Note that this
requires some care so that 5 minutes and 4 seconds after 2 in the afternoon is
output as 2:05:04 pm. The output should be to cout.

3


