Computer Science II — Lab 3
Testing and Debugging

Introduction

Testing and debugging are important steps in programming. Loosely, you can think of testing
as verifying that your program works and debugging as finding and fixing errors once you’ve
discovered it does not. Writing test code is an important (and sometimes tedious) step. Many
software libraries have “regression tests” that run automatically to verify that code is behaving the
way it should.

Here are four strategies for testing and debugging:

1. When you write a class, write a separate “driver” main function that calls each member
function, providing input that produces a known, correct result. Output of the actual result
or, better yet, automatic comparison between actual and correct result allows for verifying
the correctness of a class and its member functions.

2. Carefully reading the code. In doing so, you must strive to read what the code actually says
and does rather than what you think and hope it will do. Although developing this skill isn’t
necessarily easy, it is important.

3. Judicious use of cout statements to see what the program is actually doing. This is especially
useful for printing the contents of a large data structure or class. It is often hard to visualize
large objects using the debugger (see next item) alone.

4. Using the debugger to (a) step through your program, (b) check the contents of various
variables, and (c) locate floating point exceptions and segmentation violations that cause
your program to crash.

Points and Rectangles

The programming context for this lab is the problem of determining what 2D points are in what
2D rectangles. For rectangles, we will assume they are aligned with the coordinate axes, as shown
in Figure 1. This makes it easy to represent and to test if a point is inside. Our code will store
points in rectangles and determine which points are in which rectangles. This is a toy example of
problems that must be addressed in graphics and robotics.

Please download the following 3 files needed for this lab and then turn off your internet con-
nection:

http://www.cs.rpi.edu/academics/courses/spring07/cs2/labs/1ab03/Point2D.h
http://www.cs.rpi.edu/academics/courses/spring07/cs2/labs/1ab03/Rectangle.h
http://www.cs.rpi.edu/academics/courses/spring07/cs2/labs/1ab03/Rectangle.cpp

Checkpoint 1

Start by creating a project and adding the files Point2D.h, Rectangle.h, and Rectangle.cpp.
Examine these files briefly. Point2D.h has a simple, self-contained class for representing point



¢ (8,10)

(17,9)

*(9,35)

(4.3

A
N

Figure 1: Example of a rectange aligned with the coordinate axes — the only type of rectangle
considered here. The rectangle is specified by its upper right corner point, (17,9), and its lower left
corner point, (4,3). The point (9, 3.5) is inside the rectangle, whereas the point (8,10) is outside.

coordinates in two-dimensions. No associated .cpp file is needed because all member functions
are defined in the class declaration. Rectangle.h and Rectangle.cpp contain the start to the
Rectangle class. They also contain a bug. Please read the code now to see if you can find it. Do
not worry if you can not, but do not fix it in the code if you do!

Your job in this checkpoint is to complete the implementation of the Rectangle.cpp class.
Look through Rectangle.h and Rectangle.cpp to determine what functions need to be added. Then,
compile these files and remove any compilation errors.

Checkpoint 2

Create a new file (within Visual Studio put this within the current project) and call it test_rectangle. cpp.
Create a main function within this file. In the main function, write code to test each of the
member functions. For example, write code to create several rectangles, and print their contents
right after they are created. Write code that should produce both true and false in the function
is_point within. (In fact, if there is non-trivial logic in a function, multiple inputs to the test
code should be attempted to test as many possible conditions as you can.) Write code to add
points (or not) to a rectangle. Write code to find what points are contained in both rectangles.

To complete this checkpoint, show a TA your test cases and the error(s) that those test
cases reveal in the provided code. After doing this you should be able to spot that there is an error
in the code that I provided you (as well as, perhaps, errors in your own code). Even if you know
where the bug or bugs occur, please do not fix them yet.

Checkpoint 3

Now, we need to practice using the debugger to find and fix errors. Visual Studio has an associated
visual debugger. If you compile with g++ on cygwin, you can use the separate command-line



debugger gdb. Other debuggers are available, many of them built on top of gdb. Of special note,
gdb may be run from inside of the emacs and xemacs editors.

In the following outline, Step 1 is for everyone. Step 2 shows you how to get started, and has
separate instructions for using the Visual Studio debugger and using cygwin/g++/gdb. Steps 3
and beyond are written primarily for Visual Studio. Those of you using other debuggers should
read the Visual Studio instructions and then adapt them to your debugger. Specific pointers to
gdb commands are provided at the end of each item.

Many introductory gdb debugging tutorials can be found on-line; just type gdb tutorial into
Google. Here are three:

http://www.cs.princeton.edu/ "benjasik/gdb/gdbtut.html
http://www.cs.cmu.edu/"gilpin/tutorial/
http://arioch.unomaha.edu/~jclark/gdb_plus.html

I like the last one best, but you may feel differently. You may re-enable your internet connection
to read reference material specific to your debugger & development environment.

1. Run your program that has tests for the basic member functions. Even though the program
will compile and run, it will not give the correct output. You may be suspicious about a
place in your code where the error occurs. It is time to start the debugger.

2. Getting started:

e Getting started with the Visual Studio debugger: Begin by Setting a breakpoint.
In the source code, go to the file where the error might have originated. Select Debug
-> New Breakpoint. Four options will be presented. You can set a breakpoint based
on the program entering a function, at specific point in a file, at a memory address, or
when a specific data condition is met. Click File and you will notice that the current
line number is displayed. Click OK. A breakpoint is now set. Your program will halt
when execution reaches this location in the code (when run using the debugger). Note,
that you can set this simplest Breakpoint (with standard options) not only using this
menu, but also by right clicking at a particular line (then Insert Breakpoint), or even
more quickly clicking on a grey bar along left side of your window.

Look at the main menu and click Debug -> Start (F5). This will start your program
under control of the debugger. A console display will immediately pop up. Your program
will execute until reaching the breakpoint you’ve set.

At this point, several windows will appear including the source code window. You should
still be able to see the console where you typed the input, but this may be hidden. It is
important to look back and forth between this and the .net display.

e Getting started with g4+ /gdb: If you are using gdb or any other debugger that
works with code compiled by g++, you will need to compile your code differently. In
particular, you will need to compile using the -g option, as in

g++ -g Rectangle.cpp rectangle_test.cpp -o rect_test

This creates code with debugging information stored about the variables and functions in
the program. (Options that you set with Visual Studio compiler generate this debugging



information automatically.) Note that the format of this information is different for
different compilers, so code compiled using g++ can not be debugged using Visual Studio.

In order to start gdb type
gdb rect_test

This puts you into the command-line debugger. Type help in order to see the list of
commands. There are several for setting breakpoints. You can set a breakpoint by
specifying a function name or a line number within a file. For example

break main

sets a breakpoint at the start of the main function. You can also set a breakpoint at
the start of a member function, as in

break Rectangle::add_point
Finally, to set a breakpoint at a specific line number in a file, you may type,
break foo.cpp:65

to set a breakpoint at line 65 of file foo.cpp. Set a breakpoint at some point in your
code just before (in order of execution!) you think the first error might occur.

Finally, in order to actually start running the program under control of the debugger,
you will need to type run at the gdb command line.

As mentioned above, the remaining instructions are centered on the use of Visual Studio.
Each ends, however, with pointers to equivalent gdb commands. Use the tutorials to figure
out the differences if you are using gdb.

. Stepping through the program: You can now step through your program one line at a
time. Use F10 to step to the next line of code in the current function. This executes this
line before stopping and redisplaying (it happens very quickly, though). This works even if
the line involves a function call. If you want to see what happens inside the function call,
typing F11 will put you into the called function’s code. Try not to do this at calls to standard
library functions. It can get messy. If you do, Shift-F11 will get you out.

Hit F10 several times and watch the console display. The output lines of code you wrote will
appear so that you can see what’s happening there.

In gdb you can step through the code using the commands next and step. The command
continue allows you to move to the next breakpoint.

. Content of variables: The default set of debugging windows includes tabs “Autos”, “Lo-
cals”, and “Watch” in one panel (usually bottom left corner). If you do not see a window
that we discuss here, you can click Debug -> Windows and select the window you want to
see. Autos display variables used in the previous statement and the current statement. This
is useful when you are at a particular line in a program and only care about the subset of
all variables when investigating a problem. Locals will list all local variables in the current
scope. In the Watch window, you can display any valid expression that is recognized by the
debugger (for example sum of two variables).



In gdb, you can use print to see the values of variables and expressions. Use display to
specify the values and variables to print every time your program is stopped.

. Program flow: You will find another set of debugging windows in the second panel. These
are “Call Stack”, “Breakpoints”, “Command Window”, and “Output”. The Call Stack dis-
plays the current execution path (in terms of function calls). Click on different entries in the
call stack and different code will be displayed. Be sure to get back to the code for Rectangle.
You can tell from the position of the yellow arrow. Breakpoints lists all breakpoints in your
program. Output window shows status of various features in the development environment
and we won’t use it much in this class. Command Window is very useful and powerful. It
allows you to evaluate expressions, execute statements, print variable values, and sometimes
even change them. It operates in two modes, we will use only Immediate mode (you should
see the tab name as “Command Window - Immediate”, if you do not, type immed).

In gdb, you can use the command backtrace to show the contents of the call stack. This is
particularly important if your program crashes. Unfortunately, the crash often occurs inside
C++ library code. Therefore, when you look at the call stack the first few functions listed
may not be your code. Find the function on the stack that is the first one (nearest to the
top of the stack) that is your code. By typing frame N, where N is the index of function on
the stack, you can examine your code and variables and you can see the line number in your
code that caused the crash.

. Command Window Let’s try some of the features of the Command Window. Type
?m_upper_right. You should see complete report about this variable. Now try to change the

+x+ coordinate of the upper right corner by typing m_upper_right.m_x=2. Again, check the

status of the variable. When you type ?m_points_contained, you get report about your vec-

tor variable. You will see three pointers with their values; these are pointer to an array which

is internal representation of the vector. Type ?m_points_contained._Myfirst and you will

find out about the first element (Point2D). To see the second, type ?m_points_contained._Myfirst[1],
and so forth (until you reach the total vector size).

In gdb many of these options are handled through the print and display commands.

. Now, use F10 to step through the execution one line at a line. Look at the source code,
the console, and the watch window. You should see the error pretty soon. Use the Watch
window to find the bug in the program. Hint: You can even display one coordinate of your
rectangle. When you have found it, show a TA how you found it using the debugger. Have
your Watch window visible and also show the contents of your Command Window where you
tried examples above (enlarge the windows to take about half of your laptop screen). Be
ready to answer questions about the purpose of the other debugging windows.

In gdb, you can use the command display to see the contents of a particular variable or
expression when the program is stopped. Therefore you can complete this part of the exercise
easily using gdb.

. Breakpoint on Variable Change: The last powerful debugger feature you will find out
about today is variable monitoring. Create an instance of Point2D in your main function and
change the coordinates using Set function. You will now monitor the change of this point
using the debugger. Select Debug -> New Breakpoint and choose the Data tab. In Variable



field, type pt.m_x, pt is my point in this case. Context is to tell the debugger, where can
the variable be found. The syntax is {[function], [source], [modulel}, in our case, it is
enough if we fill in {,test_rectangle.cpp,}. Hit 0K and run the debugger.

Show your TA that your program successfully stopped when the variable got changed. Your
TA may also ask you questions about the other steps in debugging. This will complete this
checkpoint and the lab.

In gdb, you can use the command watch to halt the program when a variable or expression
changes. Therefore, you can complete this part of the lab using gdb.

Please note that the 3rd checkpoint has only given you a brief introduction to debugging. You
will learn much more through extensive practice. In fact, when you go to see one of us — the TAs or
Prof. Stewart — to ask for help in debugging your assignments, we will constantly be asking you to
show us how you have attempted to find the problem on your own. This will include combinations
of the four steps listed at the start of the lab.



