
Computer Science II — CSci 1200
Lab 5

Introduction

This lab gives you practice in working with vectors, iterators and lists. It also gives you
practice in how to write extra code to test functions that might be used for debugging.
Before starting this lab, please download the examples on the use of iterators and lists
posted with Lecture 8 on the course web site. After this, since there are no other files to
download for this lab, please turn off your internet connection.

Recall that using iterators (Lecture 8) is a straightforward extension of using pointers:
the increment, decrement and dereferencing (*) operators are all defined, and comparisons
between iterators are allowed and useful. Each standard library container has member
functions to initialize iterators which can be used to step through the container and access
and change its contents. Vector iterators have <, <=, >, >= operators. They may also
be subtracted and have integer values added to them and subtracted from them. These
properties are exactly the properties of pointers used with arrays, but do not carry over to
iterators for other types of containers, including the lists that you will work on in this lab.

Checkpoints

1. Write and test a function that reverses the contents of a vector of integers. For exam-
ple, if the contents of the vector are in increasing order before the reverse statement,
then they will be in decreasing order afterwards. For this checkpoint, use indexing
on the vector, not iterators. You may not use a second vector.

The trick is to step through the vector one location at a time, swapping values between
the first half of the vector and the second half. As examples, the value at location 0
and the value at location size()-1 must be swapped, and the value at location 1 and
the value at location size()-2 must be swapped.

Write a main function to test the function you have written. The main function should
(a) create the vectors of integers, (b) it should output the contents, (c) pass the vector
to the reverse function, and then (d) output the resulting vector. To help with this,
you should probably write an additional function that prints the size and the contents
of a vector (so you don’t need to keep writing for loops over and over). As practice,
write this function using iterators. Your main function should test special cases of
empty vectors, and vectors of one or two values. Then you should test “typical” cases.

To complete this checkpoint, show a TA the completed and correct reverse func-
tion and the test main function, and then show the TA the compilation and correct
output.

2. Write a new version of the reverse function that uses iterators instead of indices to
reverse the vector. Add code to the main program to test this. (It will involve much
copying, pasting and slightly modifying the code you wrote for Checkpoint 1 — boring
but necessary stuff).

You may need to use a straight-forward concept we did not discuss in class: a reverse
iterator. A reverse iterator is designed to step through a vector (or list) from the back
to the front. An example will make the main properties clear:

vector<int> a;
unsigned int i;
for (i=1; i<10; ++i) a.push_back(i*i);

vector<int>::reverse_iterator ri;
for(ri = a.rbegin(); ri != a.rend(); ++ri)
cout << *ri << endl;

This code will print out the values 81, 64, 49, . . . , 1, in order, on separate lines. Observe
the type for the reverse iterator, the use of the functions rbegin and rend to provide
iterators that delimit the bounds on the reverse iterator, and the use of the ++ operator
to take one step backwards through the list. It is very important to realize that rbegin
and end are NOT the same thing!

To complete this checkpoint, show a TA your version of the code that uses iterators
instead of subscripting to access the contents of the vector. One of the challenges here
will be determining when to stop (when you’ve reached the halfway point in the
vector). You may use an integer counter variable to help you do this.

3. In the last checkpoint, write a function that reverses the contents of a list of doubles.
As before, you may not use a second list. Remember that the list container class does
have a size member function that gives the number of items stored in the list.

To practice using a list, you should start by writing, compiling and testing code to
create lists (the test lists) and to print the contents of a list (put this in a function).
After you are satisfied that these work, proceed to the actual reverse function.

To complete this checkpoint and the entire lab, show a TA the working version
of the code that uses lists instead of vectors.

2

