
Computer Science II — CSci 1200
Lab 6

The cs2list class

Overview

In this lab you will implement and test several of the cs2list<T> member
functions.

Please download two files from the course web site:

http://www.cs.rpi.edu/academics/courses/spring07/cs2/lab06/cs2list.h
http://www.cs.rpi.edu/academics/courses/spring07/cs2/lab06/testcs2list.cpp

The first is the header file defining the cs2list class plus the node and
iterator classes. It includes the code we added in Lecture 11. The second
is a main program to test this class. You will need to add to both. The
program will not compile until you’ve added the code for Checkpoint 1.

Recall that thinking about writing linked-list code is best done visually.
In all cases, draw a picture of the linked list before your code begins to work.
Use this to figure out what you need to do and in what order to need to do
it! Draw separate pictures for each special case you must handle.

Debugging linked list code can be challenging. Reasons for this include
the difficulty of visualizing what’s happening and the fact that the impact
of errors (incorrectly assigned pointers, usually!) often appears later in the
code and in a different place from where the mistake was actually made.
Three methods can be used in debugging, often in combination, to find and
fix the errors. The first is writing functions to print the contents of a list.
Calls to this function should be inserted in many places in the code and
compared to the output you expect. The second is testing the functions
on small examples and special cases. The third is using a debugger to step
through the contents of a linked list, following the pointers. Try to apply
these techniques as you work toward solutions to the following checkpoints.

Finally, remember that writing and compiling the code in a templated
class is not like writing and compiling code for an ordinary class. First,
there’s the somewhat strange templating syntax for functions defined outside
of the class prototype; see the definition of push_front. Second, the code is
not compiled separately. Instead, it is included in a source file and compiled
where it is “instantiated” by creating a templated o bject. In fact, templated
functions not needed are not compiled! Finally, often the header and source
files are not separated, but instead all placed in one header file. This is the
case here.

Checkpoints

Using what you learned in Lectures 10 and 11 together with the above
background, please complete the following checkpoints.

1. Implement the pop_front member function. Start by re-examining
the push_front member function we wrote for a Lecture 20 exercise.
My solution is included in cs2list.h. Then, outline carefully what
you need to do. Here are several suggestions:

• Use a local pointer variable (not a new node!) to point to the
node that needs to be deleted.

• Check for the special case of deleting the only node in the linked
list.

• Make sure you decrement the size counter.

• Do not explicitly delete the node until the very end of the func-
tion, after it has been removed from the linked list.

The code in the main program has a number of checks to make sure
you’ve done this correctly.

Complete this checkpoint by writing and testing both the push_back
and pop_back member functions. Use push_front and pop_front to
guide you, both in terms of the logic and in terms of the format of the
function definitions (in cs2list.h). The code in the main program is
designed to help test these functions.

2. Write the insert function. Consider the prototype that you need to
write when you insert this function at the bottom of cs2list.h:

template <class T>
cs2list<T> :: iterator
cs2list<T> :: insert(iterator itr, const T& v)

At first this looks odd. The return type is written cs2list<T> :: iterator,
but inside the argument list we just use iterator. These refer to EX-
ACTLY the same type. Why then is there a difference? The answer is
scope: the return type is specified outside the scope of the cs2list<T>
class and therefore the class scope operator cs2list<T>:: needs to
be used. The inside of the argument list is within the scope of the
cs2list<T> class and so the scope operator is no longer needed.

2

Now, let’s look at the arguments themselves and use this to explain
the exact purpose of the function. The first argument is an iterator
that refers to a node in the list. The pointer to this node is stored in
the iterator:

itr.ptr_

Because cs2list<T> is a friend of the iterator class, the insert func-
tion has direct access to the value (using the syntax itr.ptr_). The
second argument to the function is the value to be added to the list.
The job of the function is to

(a) create a new node containing the value,

(b) insert the node before the node pointed to by itr.ptr_, and

(c) return an iterator that contains the address of the new node as
its ptr_ value.

Be sure you manipulate the pointers correctly (draw a picture, Draw
A Picture, DRAW A PICTURE). Be sure you consider the special
case that itr.ptr_ == head_.

There is code in the main program that has been commented out. It
will help you test this function.

3

