
Computer Science II — CSci 1200
Lecture 9 — Lists, Iterators and Examples

Announcements — Returning Test 1; Lab Next Week

• Because of the snowstorm, grading of Test 1 is not yet complete.

• Graded tests will be available during lab period next week and during class next
Friday.

• There is no scheduled lab next week, but the TAs will be available in the lab during
the lab period to

– return Test 1

– help you with lists, iterators, and HW 4

Review from Lecture 8

Ford&Topp, Ch. 6; Koenig&Moo Ch. 5.1-5.5

• We wrote several versions of a program to maintain a class enrollment list and an
associated waiting list.

• The first version used vectors to store the information. Unfortunately, erasing items
from vectors is inefficient.

• In the second version, we explored iterators and iterator operations as a different
means of manipulating the contents of the vector.

• This allowed us to replace the vector with a list in the third version.

Today’s Class — Iterators; Lists; Programming Examples

• Lists

• Review of iterators and iterator operations

• Differences between indices and iterators

• Differences between lists and vectors

• Insert and erase

• Sieve of Eratosthenes, revisited.

• Returning references to member variables from member functions

Lists

• Our second standard-library container class

• Lists are formed as a sequentially-linked structure instead of the array-like, random-
access / indexing structure of vectors.

• Lists have push front and pop front functions in addition to the push back and
pop back functions of vector

• Both erase and insert at a particular location in a list are very efficient, independent
of the size of the list.

• We can not use the standard sort function; we must use a special sort function
defined by the list type.

• Lists have no subscripting operation.

Iterators and Iterator Operations — General

• An iterator type is defined by each container class. For example,

vector<double>::iterator p;
list<string>::iterator q;

There are also string iterators, which work just like vector iterators.

• An iterator is assigned to a specific location in a container. For example,

p = v.begin() + i; // i-th location in the vector
q = r.begin(); // first entry in the list

when v is a vector of doubles and r is a list of strings.

• The contents of the specific entry referred to by an iterator are accessed using the *
operator. For example,

*p = 3.14;
cout << *q << endl;
*q = "Hello";

In the first and third lines, *p and *q are l-values. In the second, *q is an r-value.

• Stepping through a container, either forward and backward, is done using increment
(++) and decrement (--). Hence,

++ p ;
q -- ;

moves p to the next location in the vector and moves q to the previous location in the
list. Neither operation changes any of the contents of vector v or list r!

2

• When we have an iterator that references a list (or vector) of objects, the member
functions of the object are accessed through the -> operator. For example, if

list<string> words;

is a list of words, then

for (list<string>::iterator p = words.begin(); p != words.end(); ++p)
cout << *p << " " << p->size() << ’\n’;

prints out each of the words and its size. See Lecture 8 for more detail.

• Finally, we can change the container that an iterator p is attached to as long as the
types are correct. Thus, if v and w are both vector<double>, then

p = v.begin();
*p = 3.14; // changes entry 0 in v
p = w.begin() + 2;
*p = 2.78; // changes entry 2 in w

are all valid because p is a vector<double>::iterator. On the other hand, if a is a
vector<string> then

p = a.begin();

is a syntax error because of a type clash!

Iterators and Iterator Operations — Vector Iterators

Vector (and string) iterators have special capabilities that other container iterators (list for
now, but others later) do not have

• Initialization at a random spot in the vector:

p = v.begin() + i;

• Jumping around inside the vector through addition and subtraction of location counts:

p = p + 5;

moves p 5 locations further in the vector.

• These operators are allowed because vectors are really arrays (underneath the hood)
and vector iterators are really just pointers.

• Neither of these is allowed for list iterators (and most other iterators, for that matter)
because of the underlying linked structure of lists.

• Vector (and string) iterators may also be compared using <, <=, >, >=. List (and
other) iterators may only be compared using == and !=.

3

Iterators vs. Indices for Vectors and Strings

Students are often confused by the difference between iterators and indices for vectors.

• Consider the following declarations:

vector<double> a(10, 2.5), b(20, 1.1);
vector<string> c(3, string("hi"));
vector<double>::iterator p = a.begin() + 5;
unsigned int i=5;

• Iterator p refers to location 5 in vector a. The value stored there is directly accessed
through the * operator:

*p = 6.0;

This has changed the contents of vector a.

• We can also access the contents of vector a using subscripting.

• We will treat i as the subscript. It is not attached to vector a in any way. We write,

cout << a[i] << endl;

to access and output the value stored at location 5 of a.

Lists vs. Vectors

• Lists are a chain of separate memory blocks, one block for each entry.

• Vectors are formed as a contiguous (and bigger) block of memory.

• Lists therefore allow easy/fast insert and remove in the middle, but not indexing.

• Vectors therefore allow indexing (which depends on jumping around inside the block
of memory), but slow insert and remove in the middle.

Erase

• Lists and vectors each have a special member function called erase.

• In particular, given list of ints s, consider the example

list<int>::iterator p = s.begin();
++p;
list<int>::iterator q = s.erase(p);

• After the function erase,

– The integer stored in the second entry of the list has been removed.

– The size of the list has shrunk by one.

– The iterator p does not refer to a valid entry.

4

– The iterator q refers to the item that was the third entry and is now the second.

• You will often see code like the above written

list<int>::iterator p = s.begin();
++p;
p = s.erase(p);

This makes iterator p refer to a valid entry — the entry after the entry that was
erased.

• Even though this has the same syntax for vectors and for list, the vector version is
O(n), whereas the list version is O(1).

Exercise

The following problem is very important for HW 4.

Write code to erase all strings that are longer than max_size from a list of
strings called words.

Insert

• Given a list and an iterator, p, referring to an item in the list, the insert member
function of the list class may be used to insert a new item in the list before the item
referred to by p.

• The insert function returns an iterator referring to the new item that was inserted.

• As an example,

list<string>::iterator p = words.begin();
p = words.insert(p, string("Hello"));

inserts the string "Hello" at the start of the list. This code is effectively equivalent
to

words.push_front(string("Hello"));
list<string>::iterator p = words.begin();

• Continuing with this example,

list<string>::iterator p = words.end();
p = words.insert(p, string("Bye"));
p = words.insert(p, string("Good"));

5

Now, the string "Bye" is the last entry in the list, the string "Good" is the second to
last entry, and p refers to the entry containing "Good".

• To conclude this example, if words was initially empty at the start of the foregoing
code, then

for (p=words.begin(); p!=words.end(); ++p)
cout << *p << ’ ’;

cout << endl;

would output

Hello Good Bye

• Finally, there are other forms of both list<T>::insert and list<T>::erase, which
you can learn about from the textbooks or on-line resources.

Exercise

This exercise is also very useful practice for HW 4.

Suppose words is a list of strings and words is in lexicographic order. Given a
new string s, write code that will insert s into words in such a way that the
resulting list is still in lexicographic order.

6

Prime Numbers: Sieve of Eratosthenes

If there is time, we will revisit the Sieve of Eratosthenes problem using lists instead of arrays
or vectors. The solution will be posted on-line.

#include <cstdlib> // for use of atoi function
#include <iostream>
#include <list>
using namespace std;

int
main(int argc, char* argv[])
{
// Check a command-line argument is provided.
if (argc !=2)
{
cerr << "Usage: " << argv[0] << " n" << "\n"

<< " where n is a positive integer.\n";
return 1;

}

// Convert the C-style string to an integer using the function atoi found in cstdlib.
int n = atoi(argv[1]);
if (n <= 0)
{
cerr << "The argument must be a positive integer.\n";
return 1;

}

// Make a list with n integers
list<int> primes;
for (int i=2; i<=n; ++i) primes.push_back(i);

// Fill in here....

cout << ’\n’;
return 0;

}

7

References and Return Values

Here is additional details on the idea of returning a reference to an object. We have already
done this several times, once in the Student class from Lecture 4 and once in our Vec<T>
class. Here again is the Student class.

// Constructors
Student();
Student(std::string const& first, std::string const& last,

std::string const& id);

// Functions for manipulating the information stored in the Student object
void reset(); // empty and reset all local variables
void add_name_and_id(std::string const& first, std::string const& last,

std::string const& id);
void add_hw(int hw_score);
void add_test(int test_score);

// Main computation function.
void compute_averages(double hw_weight);

// Access the results
const std::string& first_name() const { return first_name_; }
const std::string& last_name() const { return last_name_; }
const std::string& id_number() const { return id_number_; }

double hw_avg() const { return hw_avg_; }
double test_avg() const { return test_avg_; }

// Output the final information.
std::ostream& output_name(std::ostream& out_str) const;
std::ostream& output_averages(std::ostream& out_str) const;

private:
std::string first_name_;
std::string last_name_;
std::string id_number_;
std::vector<int> hw_scores_;
double hw_avg_;
std::vector<int> test_scores_;
double test_avg_;
double final_avg_;

};

• A reference is an alias for another variable. For example

string one = "Tommy";
string& two = one; // two is a reference to one
two[1] = ’i’;
cout << one << endl; // This outputs the string Timmy

The reference variable two refers to the same string as variable one. Therefore, when
we change two, we are changing one.

8

– Exactly the same thing occurs with reference parameters to functions.

• Returning to the student grades program, in the main function we had a vector of
students:

vector<Student> students;

Based on our discussion of references and looking at the class declaration above, the
question arises, what if we wrote:

string & fname = students[i].first_name();
fname[1] = ’i’

Would the code then be changing the internal contents of the i-th Student object?

• The answer is NO! The reason is that the Student class function first_name returns
a const reference. The compiler will complain that the above code is attempting to
assign a const reference to a non-const reference variable.

• If you instead wrote:

const string & fname = students[i].first_name();
fname[1] = ’i’

The compiler would complain that you are trying to change a const object.

• Hence in both cases you’d be safe.

• HOWEVER, you’d get yourself in trouble if the member function return type was
only a reference, and not a const reference. Then you could access and change the
internal contents of an object! This is a bad idea in most cases.

9

