
Computer Science II — CSci 1200
Lecture 10

Linked Lists — Part 1

Test 1 Statistics

• Distribution:
Range Number
90-99 27
80-89 66
70-79 42
60-69 28
50-59 19
< 50 25

• Average: 72.6

• Slight linear curve: curved scores are written on the test.

• Solutions are posted on line.

• Regrades:

– If you believe your test was incorrectly graded, please write an explanation on
your test, mark it clearly, and resubmit.

– Be forwarned that for any issue other than a numerical tabulation error, we will
regrade your entire exam.

Today’s Class: Linked Lists Part 1

• Introductory example on linked lists.

• Basic linked list operations:

– Stepping through a list

– Push back

– Insert

– Remove

• Common mistakes

• Our study will eventually lead to our own simplified implementation of the standard
list class, as well as toward more sophisticated link-based data structures.

Objects with Pointers / Linking Objects

• The two fundamental mechanisms of linked lists are

– creating objects with pointers as one of the member variables, and

– making these pointers point to other objects of the same type.

• These mechanisms are illustrated in the follow short program.

#include <iostream>
using namespace std;

template <class T>
class Node {
public:
T value;
Node* ptr;

};

void
main()
{
Node<int>* ll; // ll is a pointer to a (non-existent) Node.
ll = new Node<int>; // Create a Node and assign its memory address to ll
ll->value = 6; // This is the same as (*ll).value = 6;
ll->ptr = 0; // The value 0 indicates a "null" pointer.

Node<int>* q = new Node<int>;
q->value = 8;
q->ptr = 0;

ll->ptr = q; // ll’s ptr member variable now has the same value
// as the pointer variable q

cout << "1st value: " << ll->value << "\n"
<< "2nd value: " << ll->ptr->value << endl;

}

• We will make the Node class templated throughout our discussion. The functions that
maniplate the nodes will therefore need to be templated as well.

• The following picture illustrates the structure of memory at the end of the program.

8

ll

value

ptr

value

ptr

q 6

2

Definition: A Linked List

• The definition is recursive: A linked list is either

– Empty, or
– Contains a node storing a value and a pointer to a linked list.

• The first node in the linked list is called the header node and the pointer to this node
is called the head pointer. The pointer’s value will be stored in a variable called head.

Visualizing Linked Lists

0

value

ptr

value

ptr

value

ptr

value

ptr

head

• The head pointer variable is drawn with its own box. It is an individual variable.

• The objects (nodes) that have been dynamically allocated and stored in the linked
lists are shown as boxes, with arrows drawn to represent pointers.

– Note that this is a conceptual view only. The memory locations could be any-
where, and the actual values of the memory addresses aren’t usually meaningful.

• The last node MUST have a 0 for its pointer value — you will have all sorts of trouble
if you do not ensure this!

• You should make a habit of drawing pictures of linked lists to figure out how to do
the operations.

Basic Mechanisms: Stepping Through the List

• Write a function:

template <class T>
bool is_there(Node<T>* head, const T& x);

to determine if a particular value, stored in x, is also in the list.

• We can access the entire contents of the list, one step at a time, by starting just from
the head pointer.

– We will need a separate, local pointer variable to point to nodes in the list as we
access them.
∗ This pointer will play the role of the iterator, although we will not yet have

all of the iterator operators.
– We will need a loop to step through the linked list (using the pointer variable)

and a check on each value.

• Writing a templated function is essentially the same as writing a function where the
T is replaced by an int — except that it is not.

3

Exercise

Based on the foregoing discussion, write the templated function is_there

Basic Mechanisms: Pushing on the Back

• Goal: place a new node at the end of the list.

• We must step to the end of the linked list, remembering the pointer to the last node.

– This is an O(n) operation and is a major drawback to the ordinary linked-list
data structure we are discussing now. We will correct this drawback by creating
a slightly more complicated linking structure in our next lecure.

• We must create a new node and attach it to the end.

• We must remember to update the head pointer variable’s value if the linked list is
initially empty.

– Hence, in writing the function, we must pass the pointer variable by reference.

• The function prototype is

template <class T>
void push_back(Node<T>* & head, T const& value)

Exercise

Write push_back.

Basic Mechanisms: Inserting a Node

• There are two parts to this: finding the location where the insert must take place,
and doing the insert operation.

4

• We will ignore the find for now. We will also write only a code segment to understand
the mechanism rather than writing a complete function.

• The insert operation itself requires that we have a pointer to the location before the
insert location — in other words, the new value is placed after the value the pointer
refers to.

– Note that this differs from the use of std::list<T>::insert, where the value
to be inserted is placed before the node referred to by the iterator.

• If p is a pointer to this node, and x holds the value to be inserted, then the following
code will do the insertion:

Node<T> * q = new Node<T>; // create a new node
q -> value = x; // store x in this node
q -> next = p -> next; // make its successor be the current

// successor of p
p -> next = q; // make p’s successor be this new node

• Can you draw a picture to illustrate what is happening here?

• This code will not work if you want to insert the value stored in x in a new node at
the front of the linked list.

Basic Mechanisms: Removing a Node

• There are two parts to this: finding the node to be removed and doing the remove
operation.

• The remove operation itself requires a pointer to the node before the node to be
removed.

• Removing the first node is an important special case.

Exercise

Suppose p points to node that should be removed from a linked list, q points to the node
before p, and head points to the first node in the linked list. Write code to remove p, making
sure that if p points to the first node that head points to what was the second node and
now is the first after p is removed.

5

Basic Mechanisms: Common Mistakes

Here is summary of common mistakes. Read these carefully, and read them again when you
have problem that you need to solve.

• Allocating a new node to step through the linked list; only a pointer variable is needed.

• Confusing the . and the -> operators.

• Not setting the pointer from the last node to 0 (null).

• Not considering special cases of inserting / removing at the beginning or the end of
the linked list.

• Applying the delete operator to a node (calling the operator on a pointer to the
node) before it is removed. Delete should be done after all pointer manipulations are
completed.

• Pointer manipulations that are out of order. These can ruin the structure of the linked
list.

Looking Ahead to Lecture 11 — Our Own List Class

• Changing the structure of the linked list:

– Nodes will be templated and have two pointers, one going “forward” to the
successor in the linked list and one going “backward” to the predecessor in the
linked list.

template <class T>
class Node {
public:

Node() : next_(0), prev_(0) {}
Node(const T& v) : value_(v), next_(0), prev_(0) {}
T value_;
Node<T>* next_;
Node<T>* prev_;

};

– We will have a pointer to the beginning and the end of the list.

• All of the mechanisms described above will be reimplemented in a class.

• We will define list iterators as a class inside a class.

6

