
Computer Science II — CSci 1200
Lecture 11

Linked Lists, Part 2

Review from Lecture 10

• Introductory example on linked lists.

• Basic linked list operations:

– Stepping through a list

– Push back

– Insert

– Remove

• Common mistakes

Today’s Lecture

• Limitations of singly-linked lists

• Doubly-linked lists:

– Structure

– Insert

– Remove

• Our own version of the list<T> class

• list<T>::iterator

Limitations of Singly-Linked Lists

• We can only move through it in one direction

• We need a pointer to the node before the node that needs to be deleted.

• Appending a value at the end requires that we step through the entire list to reach
the end.

Generalizations of Singly-Linked Lists

• Three common generalizations:

– Doubly-linked: allows forward and backward movement through the nodes

– Circularly linked: simplifies access to the tail, when doubly-linked

– Dummy header node: simplifies special-case checks

• We will only consider doubly-linked, here

The Structure of Doubly-Linked Lists

• For the next few examples, we will use the simple node class:

class Node {
public:
int value;
Node* next;
Node* prev;

};

• Here is a picture of a doubly-linked list holding 4 integer values:

0next next next next

1 3 9

prev prev prev prev

13value value value value

tail

head

0

• Note that we now assume that we have both a head pointer, as before and a tail
pointer variable, which stores the address of the last node in the linked list.

– This is not strictly necessary, but it allows immediate access to the end of the
list for push-back operations.

2

Inserting in the Middle of a Doubly-Linked List

• Suppose we want to insert a new node containing the value 15 following the node
containing the value 1.

• Suppose also that we have a temporary pointer variable, p, that stores the address of
the node containing the value 1.

• Here’s a picture of the state of affairs:

phead

next next next next

1 3 9

prev prev prev prev

13value value value value

tail

0

0

• What must happen?

– The new node must be created, using another temporary pointer variable to hold
its address.

– Its two pointers must be assigned.

– Two pointers in the current linked list must be adjusted. Which ones?

Assigning the pointers for the new node MUST occur before changing the pointers
for the current linked list nodes!

• At this point, we are ignoring the possibility that the linked list is empty or that p
points to the tail node (p pointing to the head node doesn’t cause any problems).

• Exercise: write the code as just described.

3

Removing from the Middle of a Doubly-Linked List

• Suppose now instead of inserting a value we want to remove the node pointed to by
p (the node whose address is stored in the pointer variable p)

phead

next next next next

1 3 9

prev prev prev prev

13value value value value

tail

0

0

• Two pointers need to change before the node is deleted! All of them can be accessed
through the pointer variable p.

• Exercise: write this code.

Special Cases of Remove

• If p==head and p==tail, the single node in the list must be removed and both the
head and tail pointer variables must be assigned the value 0.

• If p==head or p==tail, then the pointer adjustment code we just wrote needs to be
specialized to removing the first or last node.

• All of these will be built into the erase function that we write as part of our cs2list
class.

The cs2list Class — Overview

• We will write a templated class called cs2list that implements much of the function-
ality of the list<T> container and uses a doubly-linked list as its internal, low-level
data structure.

• Three classes are involved:

– The node class

– The iterator class

– The cs2list class itself

The Node Class

• Here’s the definition:

template <class T>
class Node {
public:

4

Node() : next_(0), prev_(0) {}
Node(const T& v) : value_(v), next_(0), prev_(0) {}
T value_;
Node<T>* next_;
Node<T>* prev_;

};

• It is ok to make all members public because individual nodes are never seen outside
the list class.

• Note that the constructors all initialize the pointers to 0 (null).

The Iterator Class — Desired Functionality

• Increment and decrement operators — operations on pointers

• Dereferencing to access contents of a node in a list

• Two comparison operations only: operator== and operator!=.

The Iterator Class — Implementation

See code attached to the handout:

• Separate class

• Stores a pointer to a node in a linked list

• Constructors initialize the pointer — they will be called from the cs2list<T> class
member functions.

• This requires that cs2list<T> be a friend class of list_iterator<T>.

– When a class A states that another class B is a friend, this means that when
any member function in B is working with an object of type A, the B member
function has access to A’s private member variables and functions.

– In our case, this means cs2list<T> member functions have direct access to the
private member variables of list_iterator<T> objects — the Node<T> pointers.

– This is especially important for the erase and insert functions.

– Note that friendship is granted, not claimed!

Now back to the details of list_iterator<T>...

• operator* dereferences the pointer and gives access to the contents of a node.

• The mechanision of stepping through the chain of the linked list is implemented by
the increment and decrement operators.

• operator== and operator!= are defined and quite important. No other comparison
operators are allowed.

5

The cs2list class — Overview and Prototype

• Job:

– Manages the actions of the iterator and node classes

– Maintains the head and tail pointers and the size of the list

– Manages the overall structure of the class through member functions

• Three member variables: head_, tail_, size_

• Typedef for the iterator name.

– This means that the name list_iterator<T> is not used outside the function.

• Prototypes for member functions, which are equivalent to the std::list<T> member
functions

• Some things are missing, most notably const_iterator and reverse_iterator.

The cs2list class — Some Member Function Details

• Many short functions are in-lined

• Clearly, it must contain the “big 3”: copy constructor, operator=, and destructor.

– The details of these are realized through the private copy_list and destroy_list
member functions. You will write one of these during lab.

Exercises

1. Write cs2list<T>::push_front

2. Write cs2list<T>::erase

6

