
Computer Science II — CSci 1200
Lecture 17 — Trees, Part 2

Review from Lecture 16

• Binary trees and binary search trees. They have a close tie to recursion.

• Tree nodes

• Basic tree algorithms: traversals

• Overview of tree implementation of cs2set class.

• Implementation of begin and find.

We will complete the discussion of begin and find in this lecture.

Review in more detail: cs2set class overview

• The classes are templated.

• There is an auxiliary TreeNode class

• The only member variables of the cs2set class are the root pointer and the size
(number of tree nodes).

• The iterator class is declared internally, and is effectively a wrapper on TreeNode
pointers.

– Note that operator* returns a const reference because the keys may not be
changed.

– The increment and decrement operators are missing. These will be discussed
more later in the lecture.

• The main public member functions just call a private (and often recursive) member
function (passing the root pointer) that does all of the work.

• Because the class stores and manages dynamically allocated memory, it must provide
a copy constructor, an operator=, and a destructor in order to work correctly.

Today’s Lecture

• cs2set operations: insert, destroy, printing, erase

• Tree height

• Increment and decrement operations on iterators

• Limitations of our implementation



Insert

Major components of the insert algorithm:

• Move left and right down the tree based on comparing keys. The goal is to find the
single location to do an insert that preserves the binary search tree ordering property.

• Inserting at an empty pointer location.

• Passing pointers by reference ensures that the new node is truly inserted into the tree.
This is subtle but important.

• Note how the return value pair is constructed.

Printing

There are two output methods:

• One outputs one key per line of output based on an in-order traversal.

• The second prints the tree sideways — rotated counter-clockwise by 90 degrees.

• This is accomplished by a “reversed” in-order traversal while keeping track of the tree
height.

• We will look at a few examples in class to get a feel for how this works.

Exercise

Write the destroy_tree member function. This should effectively be a post-order traversal,
with a node being destroyed after its left and right subtrees are destroyed.

Erase

• The first step is finding the node to remove

• Once it is found, the actual removal is easy if the node has no children or only one
child.

• It is harder if there are two children. The trick is to

– Find the node with the greatest value in the left subtree or the node with the
smallest value in the right subtree.

– The value in this node may be safely moved into the current node because of the
tree ordering.

– Then we recursively apply erase to remove that node — which is guaranteed to
have at most one child.

• Exercise: Write a recursive version of erase.

2



Height and Height Calculation Algorithm

The following is not used in the cs2set class, but is an important exercise in understanding
trees and recursion.

• The height of a node in a tree is the length of the longest path down the tree from
the node to a leaf node.

– The height of a leaf is therefore 0.

– We will think of the height of a null pointer as -1.

• The height of the tree is the height of the root node, and therefore if the tree is empty
the height will be -1.

• We will write a simple recursive algorithm in class to calculate the height of a tree.

Tree Iterators, Revisited

• The increment operator should change the iterator’s pointer to point to the next
TreeNode in an in-order traversal — the “in-order successor” — while the decrement
operator should change the iterator’s pointer to point to the “in-order predecessor”.

• Unlike the situation with lists and vectors, these predecessors and successors are not
necessarily “nearby” (either in physical memory or by following a link) in the tree, as
examples we draw in class will illustrate.

• There are two common solution approaches:

– Each iterator maintains a list of pointers representing the path down the tree to
the current node.

– Each node stores a parent pointer. Only the root node has a null parent pointer.

We will focus on the parent pointer version of the implementation.

• Implementing this requires that the insert and erase member functions correctly
adjust parent pointers.

– Handling all of the special cases involved is made easier if there is a dummy node
at the root of the tree, just as with some linked-list implementations.

• We will focus our remaining discussion on the algorithm for finding the in-order suc-
cessor of a node.

• Although this will look expensive in the worst case for a single application of operator++,
it is fairly easy to show that iterating through a tree storing n nodes requires O(n)
operations overall.

3



Limitations of Our BST Implementation

• The efficiency of the main insert, find and erase algorithms depends on the height of
the tree (the height of the root).

• The best-case and average-case heights of a binary search tree storing n nodes are
both O(log n).

• The worst-case, which often can happen in practice, is O(n). We will think about
what causes this.

• Developing more sophisticated algorithms to avoid the worst-case behavior will be
covered in Data Structures and Algorithms.

4


