
Computer Science II — CSci 1200
Lecture 22

Priority Queues and Leftist Heaps

Announcements

• Lab 12 — the last lab — will be held tomorrow.

• Test 3 will be returned in lab.

• HW 9 is due next Tuesday

• Lectures 23 and 24 will discuss class hierarchies, inheritance and polymorphism. This
material will be covered, to some extent, on the final.

Review from Lecture 21

• Idea of a priority queue

• A priority queue as a heap — a complete binary tree

• Percolate up and percolate down operations

• A heap as a vector

• Making a heap

• Heap sort

Today’s Class

• Completing Lecture 21:

– Review of the heap,

– Fundamental push and pop operations

– The heap as a vector.

– Making a heap

– Heap sort

• Merging heaps are the motivation for leftist heaps

• Mathematical background

• Basic algorithms



Leftist Heaps — Overview

• Our goal is to be able to merge two heaps in O(log n) time, where n is the number of
values stored in the larger of the two heaps.

– Merging two binary heaps requires O(n) time

• Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.

• Leftists heaps are implemented explicitly as trees.

Leftist Heaps — Mathematical Background

• Definition: The null path length (NPL) of a tree node is the length of the shortest
path to a node with 0 children or 1 child. The NPL of a leaf is 0. The NPL of a
NULL pointer is -1.

• Definition: A leftist tree is a binary tree where at each node the null path length of
the left child is greater than or equal to the null path length of the right child.

• Definition: The right path of a node (e.g. the root) is obtained by following right
children until a NULL child is reached.

– In a leftist tree, the right path of a node is at least as short as any other path to
a NULL child.

• Theorem: A leftist tree with r > 0 nodes on its right path has at least 2r − 1 nodes.

– This can be proven by induction on r.

• Corollary: A leftist tree with n nodes has a right path length of at most blog(n+1)c =
O(log n) nodes.

• Definition: A leftist heap is a leftist tree where the value stored at any node is less
than or equal to the value stored at either of its children.

Leftist Heap Operations

• The insert and delete_min operations will depend on the merge operation.

• Here is the fundamental idea behind the merge operation. Given two leftist heaps,
with h1 and h2 pointers to their root nodes, and suppose h1->value <= h2->value.
Recursively merge h1->right with h2, making the resulting heap h1->right.

• When the leftist property is violated at a tree node involved in the merge, the left
and right children of this node are swapped. This is enough to guarantee the leftist
property of the resulting tree.

• Merge requires O(log n+log m) time, where m and n are the numbers of nodes stored
in the two heaps, because it works on the right path at all times.
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Merge Code

template <class T>
class LeftNode {
public:
LeftNode() : npl(0), left(0), right(0) {}
LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}
T value;
int npl; // the null-path length
LeftNode* left;
LeftNode* right;

};

// Here are the two functions used to implement leftist
// heap merge operations. Function merge is the driver. Function
// merge1 does most of the work. These functions call each other
// recursively.

template <class Etype>
LeftNode<Etype> *
merge( LeftNode<Etype> *H1,LeftNode<Etype> *H2 )
{
if( !h1 )
return h2;

else if( !h2 )
return h1;

else if if( h2->value > h1->value )
return merge1( h1, h2 );

else
return( merge1( h2, h1 ) );

}

template <class Etype>
LeftNode<Etype> *
merge1( LeftNode<Etype> *h1, LeftNode<Etype> *h2 )
{
if( ! h1->left == NULL )
h1->left = h2;

else
{
h1->right = merge( h1->right, h2 );
if( h1->left->npl < h1->right->npl )
swap( h1->left, h1->right );

h1->npl = h1->right->npl + 1;
}

return h1;
}
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Exercises

1. Explain how merge can be used to implement insert and delete_min, and then write
code to do so.

2. Show the state of a leftist heap at the end of

insert 1, 2, 3, 4, 5, 6
delete_min
insert 7, 8
delete_min
delete_min
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