Computer Science II — CSci 1200 Lecture 22 Priority Queues and Leftist Heaps

Announcements

- Lab 12 - the last lab - will be held tomorrow.
- Test 3 will be returned in lab.
- HW 9 is due next Tuesday
- Lectures 23 and 24 will discuss class hierarchies, inheritance and polymorphism. This material will be covered, to some extent, on the final.

Review from Lecture 21

- Idea of a priority queue
- A priority queue as a heap - a complete binary tree
- Percolate up and percolate down operations
- A heap as a vector
- Making a heap
- Heap sort

Today's Class

- Completing Lecture 21:
- Review of the heap,
- Fundamental push and pop operations
- The heap as a vector.
- Making a heap
- Heap sort
- Merging heaps are the motivation for leftist heaps
- Mathematical background
- Basic algorithms

Leftist Heaps - Overview

- Our goal is to be able to merge two heaps in $O(\log n)$ time, where n is the number of values stored in the larger of the two heaps.
- Merging two binary heaps requires $O(n)$ time
- Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.
- Leftists heaps are implemented explicitly as trees.

Leftist Heaps - Mathematical Background

- Definition: The null path length (NPL) of a tree node is the length of the shortest path to a node with 0 children or 1 child. The NPL of a leaf is 0 . The NPL of a NULL pointer is -1 .
- Definition: A leftist tree is a binary tree where at each node the null path length of the left child is greater than or equal to the null path length of the right child.
- Definition: The right path of a node (e.g. the root) is obtained by following right children until a NULL child is reached.
- In a leftist tree, the right path of a node is at least as short as any other path to a NULL child.
- Theorem: A leftist tree with $r>0$ nodes on its right path has at least $2^{r}-1$ nodes.
- This can be proven by induction on r.
- Corollary: A leftist tree with n nodes has a right path length of at most $\lfloor\log (n+1)\rfloor=$ $O(\log n)$ nodes.
- Definition: A leftist heap is a leftist tree where the value stored at any node is less than or equal to the value stored at either of its children.

Leftist Heap Operations

- The insert and delete_min operations will depend on the merge operation.
- Here is the fundamental idea behind the merge operation. Given two leftist heaps, with h1 and h2 pointers to their root nodes, and suppose h1->value <= h2->value. Recursively merge h1->right with h 2 , making the resulting heap h1->right.
- When the leftist property is violated at a tree node involved in the merge, the left and right children of this node are swapped. This is enough to guarantee the leftist property of the resulting tree.
- Merge requires $O(\log n+\log m)$ time, where m and n are the numbers of nodes stored in the two heaps, because it works on the right path at all times.

```
Merge Code
template <class T>
class LeftNode {
public:
    LeftNode() : npl(0), left(0), right(0) {}
    LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}
    T value;
    int npl; // the null-path length
    LeftNode* left;
    LeftNode* right;
};
// Here are the two functions used to implement leftist
// heap merge operations. Function merge is the driver. Function
// merge1 does most of the work. These functions call each other
// recursively.
template <class Etype>
LeftNode<Etype> *
merge( LeftNode<Etype> *H1,LeftNode<Etype> *H2 )
{
    if( !h1 )
        return h2;
    else if( !h2 )
        return h1;
    else if if( h2->value > h1->value )
        return merge1( h1, h2 );
    else
        return( merge1( h2, h1 ) );
}
template <class Etype>
LeftNode<Etype> *
merge1( LeftNode<Etype> *h1, LeftNode<Etype> *h2 )
{
    if( ! h1->left == NULL )
        h1->left = h2;
    else
        {
            h1->right = merge( h1->right, h2 );
            if( h1->left->npl < h1->right->npl )
                swap( h1->left, h1->right );
            h1->npl = h1->right->npl + 1;
        }
    return h1;
}
```


Exercises

1. Explain how merge can be used to implement insert and delete_min, and then write code to do so.
2. Show the state of a leftist heap at the end of
```
insert 1, 2, 3, 4, 5, 6
delete_min
insert 7, 8
delete_min
delete_min
```

