
Computer Science II
Lecture 2

Introduction and Review
Exercise Solutions

1. From Section 2.3 Exercise

(a) Consider the following code fragment:

std::string a, b, c;
std::cin >> a >> b >> c;

and the input

all-cows eat123
grass. every good boy

deserves fudge!

What will be the values of strings a, b and c at the end of the code fragment?
Solution: The effect is as though we assigned

a = "all-cows";
b = "eat123";
c = "grass.";

If you are unsure of why this occurs, review the rules on string input from the
lecture notes.

(b) Write a C++ program that reads in two strings, outputs the shorter string on
one line of output, and then outputs the two strings concatenated together with
a space between them on the second line of output.
Solution:

#include <iostream>
#include <string>
using namespace std;

int main()
{
string s1, s2;
cin >> s1 >> s2;

if (s1.length() < s2.size())
cout << s1 << endl;

else
cout << s2 << endl;

string result = s1 + ’ ’ + s2;
cout << result << endl;
return 0;

}

2. Section 3.10 Exercises

(a) After the above code constructing the three vectors, what will be output by the
following statement?

cout << a.size() << endl
<< b.size() << endl
<< c.size() << endl;

Solution:

0
100
10000

(b) Write code to construct a vector containing 100 doubles, each having the value
55.5.
Solution:

vector<double> f(100, 55.5);

(c) Write code to construct a vector containing 1000 doubles, containing the values
0, 1,

√
2,
√

3,
√

4,
√

5, etc. Write it two ways, one that uses push_back and one
that does not use push_back.
Solution:

vector<double> g;
for (unsigned int i=0; i<1000; ++i) g.push_back(sqrt(i));

vector<double> h;
for (unsigned int i=0; i<1000; ++i) h[i] = sqrt(i);

3. 4.5 Exercise: Write an iterative version of intpow.

Solution:

int intpow(int n, int p)
{
int sol = 1;
for (unsigned int i=1; i<=p; ++i)
sol *= p;

return sol;
}

4. Exercises from Section 4.7

What will print_vec print when called in the following code?

int main()
{

vector<int> a;
a.push_back(3); a.push_back(5); a.push_back(11);
a.push_back(17);
print_vec(a);

}

2

Solution:

0: 3
1: 5
2: 11
3: 17

How can you change the second print vec function as little as possible to write a
recursive function to print the contents of the vector in reverse order?

Solution: Reverse the two lines inside the if:

print_vec(v, i+1);
cout << i << ": " << v[i] << endl;

5. 4.9 Exercises

(a) Write a non-recursive version of binary search
Solution:

bool binsearch(const vector<double>& v, double x)
{
int low = 0;
int high = v.size()-1;

while (low < high)
{
int mid = (low+high)/2;

if (x <= v[mid])
high = mid;

else
low = mid+1;

}

return x == v[low];
}

(b) If we replaced the if-else structure inside the recursive binsearch function (above)
with

if (x < v[mid])
return binsearch(v, low, mid-1, x);

else
return binsearch(v, mid, high, x);

3

would the function still work correctly?
Solution: No! The function will tend to go into an infinite recursion. Consider
the example when v contains just 3.1 and 4.1, x = 3.9. Then the function will
continue to call itself over and over with low = 0 and high = 1. This is a subtle
issue because it only shows up when the search interval gets down to 2 locations.
Getting the details right is hard!

4

