Computer Science II — CSci 1200
Test 3 — Overview and Practice

Overview

Test 3 will be held Friday, April 20, 2007 2:00-3:30pm, Darrin 308. No make-ups will
be given except for emergency situations, and even then a written excuse from the Dean of
Students office will be required.

Coverage: Lectures 15-20, Labs 9-11, HW 7-8. Material from earlier in the semester, especially
on pointers may also be covered on the test.

Closed-book and closed-notes. BUT, you may bring a one-page (8.5x11) double-sided crib
sheet without anything written or printed on it that you want. One potential use of this crib
sheet is to outline the member functions of the list, vector and map container classes.

Below are relevant sample questions from previous tests. Solutions will be posted on-line.

Important note: This review does not cover problems on hashing and hash tables. This is
new material to CSci II. You can expect to see some coverage of this on the test, however.

How to study?

— Review lecture notes
— Review and re-do lecture exercises, lab and homework problems.

— Do as many of the practice problems below as you can. Focus on the ones that cause
you trouble. Practice writing solutions using pencil (or pen) and paper.

Practice Problems

1.

Consider the mergesort function discussed in detail in lecture. Suppose the vector passed
to mergesort has 7 items in it. Specify the EXACT set of function calls that are made and
the exact order that they are made. In specifying this, you do not need to show the contents
of the vector, just the values of low and high (and mid, for calls to merge). This is not a
question that will appear on the test, but it is instructive about the behavior of merge sort.

Solution:

mergesort: low = 0
mergesort: low =0
mergesort: low = 0, high
0
1

SN2
e .
03, v
SE =2
nn

=g
-
o]
(=g
1
N w@g —» O, Wo

mergesort: low =
mergesort: low = 1,
merge: low = 0, mid = 0, hi
mergesort: low = 2, high =
mergesort: low = 2, high =
mergesort: low = 3, high = 3
merge: low = 2, mid = 2, high
merge: low =
mergesort: low = 4, high =6

=2

-
o}

[=2
Il

|
o
8
[N
Q.
I
[EY
=3
8
o)
[=3
o
w w

mergesort: low = 4, high = 5

mergesort: low = 4, high

4
mergesort: low = 5, high = 5
merge: low = 4, mid = 4, high = 5
mergesort: low = 6, high = 6
merge: low = 4, mid = 5, high
merge: low = 0, mid high =

]
()

I
w
|
(0]

. Consider the public stack interface.

template <class T>
class stack {
public:
stack();
stack(stack<T> const& other);
~“stack();
void push(T const& value);
void pop();
T const& top() const;
int size();
bool empty();
+

In Lab 10 you implemented the stack using a std::vector. In this question you are not
allowed to use either a std: :vector or a std::1list. Instead you are to implement the stack
using a dynamically-allocated array. To answer the question, show what private member vari-
ables are needed and provide the implementation of the default constructor, the destructor,
stack<T>: :push, and stack<T>: :pop. All operations should be as efficient as possible.

Solution:

template <class T>

class stack {

public:
stack() : arr(0), size(0), alloc_size(0)
{1}

stack(stack<T> const& other);

~“stack()
{
delete [] arr;
}
void push(T const& value)
{
if (size == alloc_size)

{

int alloc_size *= 2;
if (alloc_size < 2) alloc_size = 2; // could be 1 or 3 or ...
T * new_arr = new T[alloc_sizel;
for (int i=0; i<size; ++i) new_arr([i] = arrl[il;
delete [] arr;
arr = new_arr;
}
arr[size] = value;
++ sgize;

}

void pop()
{

-- size;

T const& top() const;
int size();
bool empty();
private:
T * arr;
int size;
int alloc_size;

};

. Suppose that a monster is holding you captive on a computational desert island, and has
a large file containing double precision numbers that he needs to have sorted. If you write
correct code to sort his numbers he will release you and when you return home will be
allowed to move on to DSA. If you don’t write correct code, he will eventually release you,
but only under the condition that you retake CS 1. The stakes indeed are high, but you are
quietly confident — you know about the standard library sort function. (Remember, you are
supposed to have forgotten all about bubble sort.) The monster startles you by reminding
you that this is a computational desert island and because of this the only data structure you
have to work with is a queue.

After panicking a bit (or a lot), you calm down and think about the problem. You realize
that if you maintain the values in the queue in increasing order, and insert each value into the
queue one at a time, then you can solve the rest of the problem easily. Therefore, you must
write a function that takes a new double, stored in x, and stores it in the queue. Before the
function is called, the values in the queue are in increasing order. After the function ends, the
values in the queue must also be in increasing order, but the new value must also be among
them.

Here is the function prototype.
void insert_in_order(double x, queue<double>& q)

You may only use the public queue interface (member functions) as specified in lab. You may
use a second queue as local variable scratch space or you may try to do it in a single queue

(which is a bit harder). Give an “O” estimate of the number of operations required by this
function.

Solution: Here’s the version with a scratch queue

void insert_in_order(double x, queue<double>& q)
{
if (q.empty())
q.push(x);
else
{
queue<double> temp(q); // copy q;
while (!q.empty()) q.popQ); // empty q out

while (!temp.empty() && x > temp.front())

{
double item = temp.front();
temp.pop();
q.push(item);

}

gq.push(x); // insert x in its proper position

while (!temp.empty())
{
double item = temp.front()
temp.pop();
q.push(item);
}

}

This function requires O(n) operations. Copying the queue initially and emptying the queue
requires O(n) time each. The second and third while loops, combined, touch each entry in
the queue and therefore require O(n) operations. Since none of these loops are nested we add
the results and get O(n) time overall.

Here’s a version without a scratch queue:

void insert_in_order(int x, queue<double>& q)

{
int n = q.size();
int position = O;

// Find the position for x in the queue, copying all values
// less than x to the back of the queue

while (position < n && x < q.front())
{

q.push(q.front()); // copy the front to the back

q.popQ); // remove the front
++ position;
}
g.push(x); // put x in position

// The first n-position entries on the queue haven’t been
// touched and are greater than or equal to the value
// stored in x. They need to move to the back of the queue

int i = position;
while (i < n)

{
q.push(gq.front()); // copy the front to the back
q.popQ); // remove the front
++ i

}

}

The two while loops, combined touch each entry in the queue once and therefore require O(n)
operations. Since none of these loops are nested we add the results and get O(n) time overall.

4. For this question and the next few, consider the following tree node class

template <class T>
class TreeNode {
public:
TreeNode() : left(0), right(0) {}
TreeNode(const T& init) : value(init), left(0), right(0) {}
T value;
TreeNodex left;
TreeNode* right;
};

Write a function to find the largest value stored in a binary search tree of integers pointed to
by TreeNode<int>* root. Write both recursive and non-recursive versions.

Solution: Recursive version:

int FindLargest(TreeNode<int>* root)
{
if (! root -> right)
return root -> value;
else
return FindLargest(root -> right)

Non-recursive version

int FindLargest(TreeNode<int>* root)

{
while (root -> right)
root = root -> right;
return root -> value;
X

. Write a recursive function to count the number of nodes stored in the binary tree pointed to
by TreeNode<T>* root.

Solution:

int Count(TreeNode<T>* root)
{
if (! root)
return O;
else
return 1 + Count(root -> left) + Count(root -> right);

. Write a new member function of the cs2set<T> class called to_vector that copies all values
from the binary search tree implementation of the set into a vector. The resulting vector
should be increasing order. You may assume the vector is empty at the start. The function
prototype should be

template <class T>
void cs2set<T>::to_vector(vector<T>& vec);

Solution:

template <class T>
void cs2set<T>::to_vector(vector<T>& vec)
{

to_vector(this->root_, vec);

}

template <class T>
void cs2set<T>::to_vector(TreeNode<T>* p, vector<T>& vec)
{
if (p)
{

to_vector(p->left, vec);

vec.push_back(p->value);

to_vector(p->right, vec);

}

7. Write a function called Trim that removes all leaf nodes from a tree, but otherwise retains the
structure of the tree. Hint: look carefully at the way the pointers are passed in the insert
and erase functions.

Solution:

template <class T>
void Trim(TreeNode<T> *& root) // Passing by reference is crucial here
{

if (root) // Only do something for non-empty trees

{
if (lroot->left && !'root->right) // Leaf
{
delete root;
root = 0; // This sets the appropriate pointer in the parent node to O.
}
else
{
Trim(root->left);
Trim(root->right);
}
}

8. Write a function that takes a set of strings and returns a pointer to an array containing the
strings in the set that have exactly 4 characters. The function must also return the number
of such strings so that the size of the newly constructed array is known. You may assume
there is at least one such string. Here is the prototype, with arr being the reference to the
array pointer and n being the number of strings with 4 characters.

void four_character_strings(const set<string>& values,
string* & arr, int& n);

Solution:

void four_character_strings(const set<string>& values,
string* & arr, int& n)
{

set<string>::const_iterator p;

// count the number of four letter strings

n = 0;

for (p = values.begin(); p != values.end(); p++)
if (p->length() == 4) n++;

// allocate space for n strings
arr = new string[n];

// go through a 2nd time to store the strings
int i = 0;
for (p = values.begin(); p != values.end(); p++)
{
if (p->length() == 4)
{
arr[i] = *p;
it++;

b

9. A word ladder is a sequence of words that connect a source and target word such that each
neighboring pair of words in the sequence differs by exactly one character. For example, here
is a word ladder between the words “sea” and “o0il”:

sea tea tee tie til oil

The characters can only be replaced one character at a time — they cannot be rearranged.
Furthermore, each word must appear in the provided dictionary and words cannot be repeated
in the ladder.

(a) First, write a function next_word that enumerates all possible words that can be adjacent
to an input word, current. The function takes a second parameter, dictionary, which
is simply the set of all valid words that may appear in a word ladder. The function
returns a vector of the possible next words. Here is the prototype for your function:

vector<string> next_word(const string ¤t,
const set<string> &dictionary);

Solution:

vector<string> next_word(const string ¤t,
const set<string> &dictionary)
{
vector<string> answer;
for (int i = 0; i < current.size(); i++)
{
for (int j = 0; j < 26; j++)
{
string next = current;
next[i] = char(’a’+j);
if (next != current && dictionary.find(next) != dictionary.end())
answer .push_back(next) ;

¥

return answer;

}

(b) (Challenging!) Now write a recursive function word_ladder that uses next_word and
performs a brute force search to find the shortest ladder between the source and target
words. For example, here is code to print the ladder between “sea” and “oul”:

set<string> dictionary;
// dictionary initialization omitted
vector<string> current_ladder, shortest_ladder;
current_ladder.push_back("sea");
word_ladder(current_ladder, "oil", dictionary, shortest_ladder);
for (int i = 0; i < shortest_ladder.size(); i++)
cout << shortest_ladder[i] << " ";
cout << endl;

Solution:

bool in_vector(const vector<string> &v, const string &word) {
for (int i = 0; i < v.size(); i++)
if (v[i] == word) return true;
return false;

}

void word_ladder(vector<string> &path, const string &target,
const set<string>&dictionary,
vector<string> &shortest)

string word = path.back();

// stop checking this path if it isn’t shorter
if (!shortest.empty() && path.size() >= shortest.size())
return;

// found a new shortest path
if (word == target) {
shortest = path;
return;

}

// find all possible next words
vector<string> next_choices = next_word(word,dictionary);
for (int i = 0; i < next_choices.size(); i++)

{

if (in_vector(path,next_choices[i])) continue;

// if it’s not already in the path, add it and recurse
path.push_back(next_choices[i]);

word_ladder (path,target,dictionary,shortest);
path.pop_back();

