The Darker Sides of Assembly

We've seen it.

Alex Radocea, Andrew Zonenberg



Moments in History

Thompson's Compiler Backdoor
http://cm.bell-labs.com/who/ken/trust.html

“ am a programmer. On my 1040 form, that is what | put down
as my occupation. As a programmer, | write programs. | would
like to present to you the cutest program | ever wrote. | will do
this in three stages and try to bring it together at the end.”



This Script Kitty is more cute, right?

http://www.b3tards.com/v/1f879bbd15d3273880f9/1108.jpg



Moments in History

On November 2, 1988, Robert Morris, Jr., a
graduate student in Computer Science at Cornell,
wrote an experimental, self-replicating, self-
propagating program called a worm and injected it
into the Internet. He chose to release it from MIT, to
disguise the fact that the worm came from Cornell

http://groups.csail.mit.edu/mac/classes/6.805/articles/morris-
worm.htm|



gets() payload in fingerd

Shellcode spotlight —
Robert Morris, Jr. worm
(Spaf)

pushl SEET32E fishh\O!
pushl Sheb9p22f */bin'
mov 1 sp, rll

pushl 50

pushl 50

pushl rld

pushl 53

mowv 1 Sp,ap

chmk 53k

http://scrapetv.com/News/News%20Pages/Science/Images/dune-sandworm.jpg



Spaf does it right

» Best analysis ever on The Morris Worm:
http://homes.cerias.purdue.edu/~spaf/tech-reps/82
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8)  The infection attempls proceeded by one of three routes: rvh, fingerd, or sendmail.
8a) The attack via rsh was done by attempting o spawn a remole shell by invocation of
(m order of ral) jusrfuchdrsh, fusr/bmdrsh, and Manfrsh. I successful, the host was
infected as in steps 1 and 2a, above.

by The awack via the finger dacmon was somewhal more subtle. A connection was
established 1o the remote finger server daemon and then a specudly constrocted
string of 536 bytes was passed o the daemon, overflowmg its mpul buffer and
overwriling parts of the stack. For standard 4 BSD versions runmng on VAX com-
puters, the overflow resulted m the return stack frame for the main routing being
changed so that the retum address pointed nto the buffer on the stack. The msiroc-
tons that were wrilten mnto the stack at that location were:

pushl SERTIZE *ishhO!
pushl Sheh0R22f fibint
mow 1 sp, rld

pushl 50

pushl 50

pushl rlQ

pushl 53

mow 1 sp, ap

chmk 53k

That 15, the code executed when the main rouling atlempled Lo rern was:
execve"/binsh", 0, 0)

On Vaxen, thas resulted m the worm connected w a remote shell via the TCP con-
nection. The worm then proceeded to mfect the host as 1o steps 1 and 2a, above.
On Suns, this amply resulied in a core file since the code was not i place 1o corrupl
a Sun version of fingerd 1 a sumilar fashion.

gc) The worm then ried w omnfect the remote host by establishing o connection o the
SMTP port and mailing an infection, as m step 2b, above.


http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

Outline of Today's Agenda

* Moments in History
* Basic terminology
e Code injection
* Shellcode
 Building a virus

- The ELF format
- Injection Schemes

e ? Surprise us



Terminology

Backdoor . ¢ Program allowing remote, covert
access
Virus » ¢ Parasitic program

« Self-propagating network-

Worm " enabled program

Rootkit » « Tools to covertly maintain high-
level system access

Malware/Spyware ——» « Harmful software (popups,
password/CC sniffers....)

Botnet > . MMORPG — without the RPG




http://www.flickr.com/photos/andresrueda/2983149263/



Code injection we care about

* Runtime Arbitrary Code Execution

* Privileged Processes
« Signed/Trusted Code Execution Environments
« Remote programs

* Program File injection

o P77



Runtime Code Injection

* Remember all those crashmes?
* Local code injection

« Command line arguments, environment, pathname,
executable interpreter flags, program data
(heap,stack,...)

 Remote code injection
 Program data



Writing your first shellcode.

e Goal:

» do not fork bomb anything
* Print a message to the screen



daSm
BITS 32

: nasm -f elf code.asm; Id -o code.bin code.o; ./code.bin
' nasm -f bin code.asm ; ndisasm -u ./code

global _start
_start:

XOor eax, eax
mov eax, 4
jmp data

back:

Xor ebx, ebx
pop ecx
mov edx, 13
int 0x80

mov eax, 1
int 0x80

data:
call back
db "HI csci4971",0x0a



demO



Minimization tips

e Data is code Is data I1s code Is data is code ...

(von Neumann arch vs Harvard)
 NUL byte safe?

 Match constants to register sizes
* Avoid some instructions

 Use math to get values with NUL
 Encoder/Decoder



Minimization Tips (II)

e Size problems?
* Multi-staged payloads

- Establish data transfer
- Recelive code

- Decode it

- Execute it

 Code crunch:

» extra credz for shortest, self-contained d/I and
execute binary code.



No shellcode necessary

* Ret2libc

« Solar Designer '97



Memory corruption can be hard, but
also very easy

* Linux local bugs:
» Off-by-one on gccd main()

* Truncates frame pointer by one byte
* Bypass ASLR

e “patched up”
o Still missing /proc/pid/stat



Writing a Virus

 Parasitic code

 |njects into drivers, system code files, executable
programs, runtime process memory, ...

httn://www flickr com/nhoto<s/atninlash/61424646/in/nhotostream/



Plan of Action

 Harmless Linux ELF Infector
 Open a file
 Expand size

Inject code
Update offsets

Save to filesystem



Useful links

Cesare's http://vx.netlux.org/lib/static/vdat/tuunix02.htm
Eresi: http://www.eresi-project.org/

nttp://virus.bartolich.at/virus-writing-
HOWTO/_html/index.html

nttp://felinemenace.org/~mercy/slides/RUXCON2004-
ELFfairytale.ppt

http://www.vx.netlux.org/lib/vrn00.html

http://www.phrack.com/issues.html?
Issue=56&id=7&mode=txt



The ELF Format

ELF Header

e Man 5 elf
Program Headers
 Runtime
Section Headers
e Link time

Misc



More useful links

* http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/devspecs/abi386-4.pdf


http://www.sco.com/developers/gabi/latest/contents.html

ELF header

Liﬁing View Execution View

Program header table

(optional)

ELF header

section |

Program header table

Segment 1

=aCtion n

Segment 2

LN

Section header table

LN

Section header table
(optional}

http://users.csc.calpoly.edu/~mhaungs/paper/img7.qgif




ELF Header

typedef struct {
unsigned char e_ident[El _NIDENT];
uint16_t e type;
uint16_t e _machine;
uint32_ t e _version;
EIfN_Addr e_entry;
EIfN_Off e_phoff;
EIfN_Off e_shoff;
uint32_t e flags;
uint16_t e _ehsize;
uint16_ t e _phentsize;
uinti16.t e _phnum;
uint16_t e shentsize;
uint16_t e _shnum;
uint16_t e _shstrndx;

} EIfN_Ehdr;




Program Headers

typedef struct {
uint32_t p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
EIf32_Addr p_paddr,;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
} EIf32_Phdr,

PT_LOAD

PT_INTERP

PF_X An executable segment.
PF_W A writable segment.
PF_R Areadable segment.



Using readelf/objdump/etc

e Demo




Some ELF File Infection strategies

* Overwrite existing code

* Semantic nop injector (bukowski framework)
* Hijack GOT/PLT redirection

 Expand TEXT segment

* |Insert new PF_X segment
* Replace Dynamic Interpreter

* |Inject malicious shared object file paths



° >>

Simple infector



PHDR Injection

 Add a PF_X segment
* Add code
* Hijack entry point / branch



How do you do it all in asm?

* Need self propagation
 No compiler available (Sorry Ken)



All you need is...

* Open()
* Mmap()
e asm code



Infector demo



ELF Virus Detection

* Tripwire...

Mismatched Section Headers
Extra executable segments
Strange shared libraries/dynamic interpreter

Unusual entry point

« Q: Can the entry point be outside of the TEXT
segment?

Linux AVs
P07
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