The Darker Sides of Assembly

We've seen it.

Alex Radocea, Andrew Zonenberg

Moments in History

Thompson's Compiler Backdoor
http://cm.bell-labs.com/who/ken/trust.html

“ am a programmer. On my 1040 form, that is what | put down
as my occupation. As a programmer, | write programs. | would
like to present to you the cutest program | ever wrote. | will do
this in three stages and try to bring it together at the end.”

This Script Kitty is more cute, right?

http://www.b3tards.com/v/1f879bbd15d3273880f9/1108.jpg

Moments in History

On November 2, 1988, Robert Morris, Jr., a
graduate student in Computer Science at Cornell,
wrote an experimental, self-replicating, self-
propagating program called a worm and injected it
into the Internet. He chose to release it from MIT, to
disguise the fact that the worm came from Cornell

http://groups.csail.mit.edu/mac/classes/6.805/articles/morris-
worm.htm|

gets() payload in fingerd

Shellcode spotlight —
Robert Morris, Jr. worm
(Spaf)

pushl SEET32E fishh\O!
pushl Sheb9p22f */bin'
mov 1 sp, rll

pushl 50

pushl 50

pushl rld

pushl 53

mowv 1 Sp,ap

chmk 53k

http://scrapetv.com/News/News%20Pages/Science/Images/dune-sandworm.jpg

Spaf does it right

» Best analysis ever on The Morris Worm:
http://homes.cerias.purdue.edu/~spaf/tech-reps/82

i i e e e i B i e e e e

8) The infection attempls proceeded by one of three routes: rvh, fingerd, or sendmail.
8a) The attack via rsh was done by attempting o spawn a remole shell by invocation of
(m order of ral) jusrfuchdrsh, fusr/bmdrsh, and Manfrsh. I successful, the host was
infected as in steps 1 and 2a, above.

by The awack via the finger dacmon was somewhal more subtle. A connection was
established 1o the remote finger server daemon and then a specudly constrocted
string of 536 bytes was passed o the daemon, overflowmg its mpul buffer and
overwriling parts of the stack. For standard 4 BSD versions runmng on VAX com-
puters, the overflow resulted m the return stack frame for the main routing being
changed so that the retum address pointed nto the buffer on the stack. The msiroc-
tons that were wrilten mnto the stack at that location were:

pushl SERTIZE *ishhO!
pushl Sheh0R22f fibint
mow 1 sp, rld

pushl 50

pushl 50

pushl rlQ

pushl 53

mow 1 sp, ap

chmk 53k

That 15, the code executed when the main rouling atlempled Lo rern was:
execve"/binsh", 0, 0)

On Vaxen, thas resulted m the worm connected w a remote shell via the TCP con-
nection. The worm then proceeded to mfect the host as 1o steps 1 and 2a, above.
On Suns, this amply resulied in a core file since the code was not i place 1o corrupl
a Sun version of fingerd 1 a sumilar fashion.

gc) The worm then ried w omnfect the remote host by establishing o connection o the
SMTP port and mailing an infection, as m step 2b, above.

http://homes.cerias.purdue.edu/~spaf/tech-reps/823.pdf

Outline of Today's Agenda

* Moments in History
* Basic terminology
e Code injection
* Shellcode
 Building a virus

- The ELF format
- Injection Schemes

e ? Surprise us

Terminology

Backdoor . ¢ Program allowing remote, covert
access
Virus » ¢ Parasitic program

« Self-propagating network-

Worm " enabled program

Rootkit » « Tools to covertly maintain high-
level system access

Malware/Spyware ——» « Harmful software (popups,
password/CC sniffers....)

Botnet > . MMORPG — without the RPG

http://www.flickr.com/photos/andresrueda/2983149263/

Code injection we care about

* Runtime Arbitrary Code Execution

* Privileged Processes
« Signed/Trusted Code Execution Environments
« Remote programs

* Program File injection

o P77

Runtime Code Injection

* Remember all those crashmes?
* Local code injection

« Command line arguments, environment, pathname,
executable interpreter flags, program data
(heap,stack,...)

 Remote code injection
 Program data

Writing your first shellcode.

e Goal:

» do not fork bomb anything
* Print a message to the screen

daSm
BITS 32

: nasm -f elf code.asm; Id -o code.bin code.o; ./code.bin
' nasm -f bin code.asm ; ndisasm -u ./code

global _start
_start:

XOor eax, eax
mov eax, 4
jmp data

back:

Xor ebx, ebx
pop ecx
mov edx, 13
int 0x80

mov eax, 1
int 0x80

data:
call back
db "HI csci4971",0x0a

demO

Minimization tips

e Data is code Is data I1s code Is data is code ...

(von Neumann arch vs Harvard)
 NUL byte safe?

 Match constants to register sizes
* Avoid some instructions

 Use math to get values with NUL
 Encoder/Decoder

Minimization Tips (II)

e Size problems?
* Multi-staged payloads

- Establish data transfer
- Recelive code

- Decode it

- Execute it

 Code crunch:

» extra credz for shortest, self-contained d/I and
execute binary code.

No shellcode necessary

* Ret2libc

« Solar Designer '97

Memory corruption can be hard, but
also very easy

* Linux local bugs:
» Off-by-one on gccd main()

* Truncates frame pointer by one byte
* Bypass ASLR

e “patched up”
o Still missing /proc/pid/stat

Writing a Virus

 Parasitic code

 |njects into drivers, system code files, executable
programs, runtime process memory, ...

httn://www flickr com/nhoto<s/atninlash/61424646/in/nhotostream/

Plan of Action

 Harmless Linux ELF Infector
 Open a file
 Expand size

Inject code
Update offsets

Save to filesystem

Useful links

Cesare's http://vx.netlux.org/lib/static/vdat/tuunix02.htm
Eresi: http://www.eresi-project.org/

nttp://virus.bartolich.at/virus-writing-
HOWTO/_html/index.html

nttp://felinemenace.org/~mercy/slides/RUXCON2004-
ELFfairytale.ppt

http://www.vx.netlux.org/lib/vrn00.html

http://www.phrack.com/issues.html?
Issue=56&id=7&mode=txt

The ELF Format

ELF Header

e Man 5 elf
Program Headers
 Runtime
Section Headers
e Link time

Misc

More useful links

* http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/devspecs/abi386-4.pdf

http://www.sco.com/developers/gabi/latest/contents.html

ELF header

Liﬁing View Execution View

Program header table

(optional)

ELF header

section |

Program header table

Segment 1

=aCtion n

Segment 2

LN

Section header table

LN

Section header table
(optional}

http://users.csc.calpoly.edu/~mhaungs/paper/img7.qgif

ELF Header

typedef struct {
unsigned char e_ident[El _NIDENT];
uint16_t e type;
uint16_t e _machine;
uint32_ t e _version;
EIfN_Addr e_entry;
EIfN_Off e_phoff;
EIfN_Off e_shoff;
uint32_t e flags;
uint16_t e _ehsize;
uint16_ t e _phentsize;
uinti16.t e _phnum;
uint16_t e shentsize;
uint16_t e _shnum;
uint16_t e _shstrndx;

} EIfN_Ehdr;

Program Headers

typedef struct {
uint32_t p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
EIf32_Addr p_paddr,;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
} EIf32_Phdr,

PT_LOAD

PT_INTERP

PF_X An executable segment.
PF_W A writable segment.
PF_R Areadable segment.

Using readelf/objdump/etc

e Demo

Some ELF File Infection strategies

* Overwrite existing code

* Semantic nop injector (bukowski framework)
* Hijack GOT/PLT redirection

 Expand TEXT segment

* |Insert new PF_X segment
* Replace Dynamic Interpreter

* |Inject malicious shared object file paths

° >>

Simple infector

PHDR Injection

 Add a PF_X segment
* Add code
* Hijack entry point / branch

How do you do it all in asm?

* Need self propagation
 No compiler available (Sorry Ken)

All you need is...

* Open()
* Mmap()
e asm code

Infector demo

ELF Virus Detection

* Tripwire...

Mismatched Section Headers
Extra executable segments
Strange shared libraries/dynamic interpreter

Unusual entry point

« Q: Can the entry point be outside of the TEXT
segment?

Linux AVs
P07

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

