

Integer safety crash course

Read this chapter, it's from a great book you should buy:
http://taossa.com/index.php/the-vault/chapter-6-c-language-issues/

Signedness

● 1111111111111111111
1111111111111

● Most significant bit
● Least significant bit

● int a = -1;

Two's Complement

● 1111111111111111111111111
1111111

● Most significant bit

● Least significant bit

● ~negate →
00000000000000000000000
000000000

● add 1 →
00000000000000000000000
000000001

● int a = -1, b;
● b = -a;

printf(“%d\n”,a);
● b = ~a + 1;

printf(“%d\n”,b);

Declaring variables

● int c;
● char c;
● long c;
● short c;
● #define X 4

● Signed or unsigned?
● Signed or unsigned?
● Signed or unsigned?
● Signed or unsigned?
● Signed or unsigned?

http://www.cdecl.org/

Declaring variables

I. int c;

II.char c;

III.long c;

IV.short c;

V. #define X 4

I. Signed or unsigned?

II.Often signed-
depends

III. Signed

IV. Signed

V. Signed

http://www.cdecl.org/

Signedness in a security context

● Bounds checking
● Bounds checking
● Bounds checking

● void
dumpcash(unsigned
int amt) { … }

if (amt < acct_bal)
 dumpcash(amt);

● #define SIZE 64
if (index < SIZE)
 buffer[index] = data;

Signedness Concept → implicit
funk

● int a =
read_int(sockfd);

● if (a < sizeof(buf)) {

}

● If a = -1?

Signedness Concept 1 → implicit
conversion (coercion)

● signed vs unsigned
● Converted to

unsigned arithmetic
● Unsigned takes

precedence

● int a;
● a < sizeof(buf)
● == false
● 0xffffffff < sizeof(buf)

Signedness Concept 2 → sign
extension

● a = 10000000
● b =

1111111111111111111
1111110000000

● char a = 0x80;
● unsigned int b = a;
● printf(“%u\n”,b);

● This slide might remind you of a lab exercise
advisory you might be stuck on

Signedness Concept 3 → integer
promotion

● Well covered in
taossas

● Learned this from
fellow RPI student
Roy Wellington in
2008; Roy read the C
spec

● Default is int
conversion

● unsigned short a, b;
● a =

strtoul(argv[1],0,0);
● b =

strtoul(argv[2],0,0);
● if(a*b < 0){

 printf(“Roy is the
man\n”);
}

Considerations for the future

● Signedness bugs are
here to stay

● 64-bit won't make
them go away

Esoteric signedness fun

● 10000000000000000
000000000000000

● Most significant bit
● Least significant bit

● int a = -2147483648;

printf(“%d %d\n”, -a,
~a+1);

Guess the next topic

● What are the
boundary conditions
for len?

● weirdcopy(char *buf,
char *data, unsigned
int len){
do {
 buf[len] = *data++;
} while(--len);
}

Thanks to A^2 for pointing out an error

Underflow

● Aside: everything but 0 is
true in C

●

● len = 0;
● len → len = -1
● len = -2
● …
● len = 1
● len = 0

● while(--len){
 do_stuff
}

A common pattern for underflows

● This bad code is
everywhere

● buf[strlen(buf)-1] = 0;

● sz = 0
buf = malloc(sz);
for(i = 0; i < sz-1; i++)
 buf[i] = read_char(fd);

● strlen(buf) can be 0

● malloc 0 still allocates
memory

● These are
exploitable

Overflow on addition

● int x = 0xdeadbeef;
● x + 0xbadc0ded = ?

http://www.youtube.com/watch?v=y4GDcvweo14

Addition under the covers
● int x = 0xdeadbeef;
● x + 0xbadc0ded = ?
● 11011110101011011011111011101111
 10111010110111000000110111101101

● ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
110011001100010011100110011011100

Multiplication too!

● uint sz = read_int();
● Buf =

malloc(sizeof(int) *
sz);

● Numeric overflow by
multiplication,

● Can be used to
trigger buffer
underflows and
overflows depending
on signedness.

Overflow thoughts

● Numeric overflows
have become more
difficult to exploit
because of 64-bit

● :-(

● X86 + other archs
can detect overflows,
compilers dont

Don't forget about truncation

● Look for lots of these in 64 bit code; anywhere
you have variable integer sizes

● uint64_t sz = read_bytes(sizeof(uint64_t));
● uint32_t limit = sz;
● if(limit < MAX) { … }

2 – Format strings

● printf(buf)
● sprintf,snprintf,syslog,asprintf,v*rintf, custom

debug functions, ...
● Newer gcc versions warn about unspecified

format strings

Deep thoughts on fmt strings

● Easy to find
● Direct parameter access not available on

windows
● Latest VC++ disables %n entirely

3 – off by ones

● char buf[256]; int i;
● for(i = sizeof(buf); i >= 0; i—)
● for(i = 0; I <= sizeof(buf); i++)
● for(i = 0; sizeof(buf) > i; i++)
● char *buf = malloc(256);

buf[256] = 0;

NUL termination

● “The strncpy() function is similar, except that at
most n bytes are copied. Warning: If there is
no null byte among the first of src, the string
placed in dest will not be null terminated.”

“The functions snprintf() and vsnprintf() write
 at most size bytes (including the trailing null
byte ('\0')) to str.”

float != double

● Float
8 bit exponent
23 bit mantissa
About 7 decimal digits precision

● Double
11 bit exponent
53 bit mantissa
About 16 decimal digits precision

Floating point woes

#include <stdio.h>

#include <unistd.h>

double GetTime();

int main(int argc, char* argv[])

{

float a = GetTime();

usleep(5000 * 1000);

float b = GetTime();

printf("a = %f\nb = %f\ndt = %f\n", a, b, b-a);

return 0;

}

Output

● a = 1265603328.000000
● b = 1265603328.000000
● dt = 0.000000

Spot the bug

int verify(char* in, char* pass)
{

if(strcmp(in,pass) == 0)

 return STATUS_PASSWORD_OK;
return STATUS_PASSWORD_ERROR;
}

buf = new T[x]

● buf = malloc(x*sizeof(T));
for(i=0; i<x; i++)
 call constructor on buf[i]

● What happens when x*sizeof(T) > UINT_MAX?

delete x != delete[] x

● delete x
call destructor on *x
free(x)

● delete[] x
ask memory manager for size of block
for(i=0; i<size / sizeof(T); i++)
 call destructor on x[i]
free(x)

Double free / use after free

● Member functions are just functions with a
hidden parameter “this”

● Calling on an invalid pointer will sometimes
succeed

● Data corruption, especially static / global
variables, typically results

Reference counting

● Double free = drop reference counter twice
● We have one object and free it twice
● Refcount is now... ?

Exception handling

● Exception records are usually on the stack
● Corrupt these and throw an exception

Don't trust your compiler
#include <stdio.h>
int main(int argc, char* argv[])
{

unsigned int* a;
unsigned int i;
for(i=0; i<1; i++)

printf("*a = %d\n",*a);
return 0;

}

Here's a harder one
#include <stdio.h>
int main(int argc, char* argv[])
{

unsigned int a;
unsigned int b = a;
unsigned int i;
for(i=0; i<1; i++)
{

if(i > 0xdead)
{

printf("Initializing a\n");
a = 999;

}

printf("a = %3d, b = %3d. ",a, b);
if(a == b)

printf("Equal\n");
else

printf("Not equal\n");
}
return 0;

}

Citations, Good reading

● http://www.ruxcon.org.au/files/2006/unusual_bugs.pdf
● http://taossa.com/index.php/the-vault/chapter-6-c-language-issues/
● http://cr.yp.to/2004-494.html

http://www.ruxcon.org.au/files/2006/unusual_bugs.pdf
http://taossa.com/index.php/the-vault/chapter-6-c-language-issues/
http://cr.yp.to/2004-494.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

