

Cryptography Review

Andrew Zonenberg
4/8/2010

Basic cryptographic primitives

● Randomness etc
● Encryption / decryption
● Hashing
● Key agreement
● Signing / verification

Randomness

● Keys etc should be unpredictable
● Pseudorandom vs random
● rand() == bad (remember red bomb wire)
● /dev/random is good, radioactive decay better...
● Debian OpenSSL bug etc

Avalanche effect

● Flipping one input bit (message or key) should
ideally flip a random half of the output bits

● Mixing is critical - all output bits should depend
on all inputs

● But mixing alone isn't enough!

for(i=0; i<128; i++)
 xor odd numbered bits of block with bit i of key
for(i=128; i<256; i++)
 xor even numbered bits of block with bit i of key

Encryption

● Symmetric - same key used both ways
● Asymmetric - separate public / private keys

Symmetric ciphers

● Block ciphers (AES, DES, Blowfish...)
● Stream ciphers (RC4...)

Block ciphers

● Maps fixed length input to same-sized output
● Chop message into blocks and pad as needed
● Multiple modes of operation

Round based ciphers

● Designing an entire cryptosystem in one
massive step is very difficult

● Define a simple operation (“round function”)
and apply it many times

● Each round typically uses a separate key
derived from the original key by a function
called the “key schedule”

ECB mode

● Electronic Code Book
● Each input block always maps to the same

output
● Problems?

ECB mode - flaws (1)

● Block-level replay attacks
● Content guessing possible
● Can discern high level structure

ECB mode - flaws (2)

Image credit: Larry Ewing<lewing@isc.tamu.edu>, The GIMP

Bad

Good

CBC mode

● XOR each block with previous ciphertext
● Needs unique (not secret) initialization vector

for each message

CTR mode

● aka Counter
● Turns a block cipher into a stream cipher
● Encrypt a “counter” value with our key
● XOR plaintext with resulting ciphertext
● Bump counter and repeat after N bytes
● Counter cannot ever be re-used!

A closer look at AES

● 128 bit block size, 128/192/256 bit key
● 16 byte state, 4x4 matrix
● AddRoundKey - mix subkey for this round
● SubBytes - adds nonlinearity via substitution
● ShiftRows - add diffusion by circular shifts
● MixColumns - adds diffusion by binary field

mixing operation

Stream ciphers

● Generate a stream of pseudorandom data
derived from our key

● XOR keystream with message
● Needs an initialization vector of some sort
● IV sharing is bad

A closer look at RC4

● Common stream cipher used in SSL etc
● Permutation S of bytes 00-FF
● Index pointers i and j
● Key can be 1 to 256 bytes, typically 40-128 bits

(5 - 16 bytes)

RC4 key schedule

void rc4_keyschedule(
unsigned char *key, unsigned int key_length)

{
 for (i = 0; i < 256; i++)
 S[i] = i;

 for (i = j = 0; i < 256; i++)
 {
 j = (j + key[i % key_length] + S[i]) & 255;
 swap(S, i, j);
 }

 i = j = 0;
}

Credit: Wikipedia article on RC4

RC4 PRNG

unsigned char rc4_prng()
{
 i = (i + 1) & 255;
 j = (j + S[i]) & 255;

 swap(S, i, j);

 return S[(S[i] + S[j]) & 255];
}

Credit: Wikipedia article on RC4

Stream cipher problems

● If IV is reused, suffers from same replay issues
as ECB mode in block ciphers

● XORing two ciphertexts using the same IV
gives XOR of the plaintexts

● Can flip arbitrary bits in the message easily

Stream cipher attack

● Ciphertext 1 = 0x 34069fca7fe70cf5
● Ciphertext 2 = 0x 1b2aeb9e38a236c4
● One of the messages is the start of an HTTP

request
● The other is from an IM conversation
● Same RC4 key used for both
● Find both plaintexts and the secret keystream

Public key cryptography

● Different keys used for encryption and
decryption

● Computing public key from private is easy
● Computing private from public is hard
● Messages encrypted with one can be decrypted

with the other
● Very slow, huge keys

Public key encryption

● A encrypts message to B with B's public key
● Can be decrypted by B's private key only

Public key signature

● A encrypts hash of message with A's private key
● Anyone with A's public key can read it
● But only A could have produced it

A closer look at RSA

● Generate two primes P, Q
● Public modulus N = PQ
● Φ(pq) = (p-1)(q-1)
● Public exponent e: 1 < e < Φ(pq)

e, Φ(pq) are relatively prime
● Private exponent d: de = 1 mod Φ(pq)

More RSA

● Encryption: c = me mod n
● Decryption: m = cd mod n
● Message has size limit, typically is a symmetric

session key
● Message must be padded to prevent chosen

plaintext attacks etc

Flawed SSL-like protocol

● Client contacts server
● Server sends RSA public key
● Client encrypts RC4 session key to server
● All traffic is now RC4 encrypted
● Separate IV for transmit and receive traffic
● Spot the problems!

Key exchange

● Derive a shared secret between two users
● Typically cannot be used to encrypt an arbitrary

message - exceptions apply ;)

Diffie-Hellman key exchange

● Select shared modulus p and base g
● A chooses secret integer a, sends A=ga mod p
● B chooses secret integer b, sends B = gb mod p
● A computes Ba mod p
● B computes Ab mod p
● (ga)b = (gb)a

● Breaking requires solving discrete logarithm
problem

Exercise

● Find as many covert channels as possible in
this scheme

Cryptographic hash functions

● AKA Message Digest
● Takes arbitrary length input

(sometimes restricted to large but finite, 264 etc)

● Returns fixed size output

A closer look at MD4

● 32 bit words
● Append a 1 bit, then 0s until len = 56 (mod 64)
● Append length as a 64 bit little endian integer
● Initialize state A, B, C, D
● Divide into blocks of 16 words (64 bytes)
● Process each block in sequence

Round functions

● F = (X & Y) | (~X & Z)
● G = (X & Y) | (X & Z) | (Y & Z)
● H = X ^ Y ^ Z

MD4 block processing

● Save old A, B, C, D
● Round operation [abcd k s]

 a = (a + F(b,c,d) + X[k]) <<< s
● Example (round 3 of 3)

 [ABCD 0 3] [DABC 8 9] [CDAB 4 11] [BCDA 12 15]
 [ABCD 2 3] [DABC 10 9] [CDAB 6 11] [BCDA 14 15]
 [ABCD 1 3] [DABC 9 9] [CDAB 5 11] [BCDA 13 15]
 [ABCD 3 3] [DABC 11 9] [CDAB 7 11] [BCDA 15 15]

● Add old A, B, C, D to current
● Problems?

MD4 exercise

● 8e793b925ad32db390091141f6b6a11b
● Reverse the state as far as possible
● Input is 7 ASCII characters

