
Secure C Coding

Andrew Zonenberg | Alex Radocea

...yeah right

Agenda

Some Quick Review

Data Representation

Pointer Arithmetic

Memory Management

Basic C Vulnerabilities

Memory Corruption

Ignoring Return values

Typos

Everything is made of
bits

int main(){
 char one[] = ”JARS”;
 char two[] = {0x74, 0x65, 0x82, 0x83};
 short three[] = {16714, 21330};
 int four = 1397899594;
 float five = 9.03038500864E11;
 __asm{
 dec edx
 inc ecx
 push edx
 push ebx
 }
}

Two's complement
trivia

Under 32-bit signed number arithmetic
using 2's complement number
representation:

What is abs(-2147483648)?

C string
representation is all
about the NUL byte

termination
47 4f 4f 53 45 00 |
GOOSE.|

char buf[]=”hi”;
sizeof(buf) = ?

Photo Credit:
http://www.flickr.com/photos

/benimoto/911325473/

Pointer Arithmetic
Quiz

void *x = 0x1337c000;
char *c = (char *)x;
short *s = (short *)x;
int *i = (int *)x;
double *d = (double *)x;

x + 1 = ?
c + 1 = ?
s + 1 = ?
i + 1 = ?
d + 1 = ?

This is the pattern.

(ptr *)p + count => p +
sizeof(ptr_type)*count

double *p = 400;
p + 5 => p + sizeof(double)*5 = 440

unsigned short *x = 400;
x + 10 => ??

Even the ”hex”perts
get it wrong.

CVE-2009-3234

Incomplete fix for buffer overflow in
perf_copy_attr, signed off by core
developer(s)

Vulnerable code should always get
special care and attention, where there's
one bug there's often many more.

http://lkml.org/lkml/2009/9/19/155

Pointer Trivia

Will this compile? What happens?

Memory management
in a nutshell

The Stack

Fixed size buffers*

Flow control information

Function pointers

Activation records

Implicitly cleaned up

Uninitialized

The Heap

Dynamic size

Flow control information

Function pointers

Internal memory
structures

Explicitly cleaned up

Uninitialized

Stack → First in First
Out

int func(int a, int b, int c){
 int x;
 char y;
 FILE* f;
 char buffer[1000];
 …
 func(1,2,3);
 ...
} etsylove.ning.com

Misc Stack Info

Stack cookies mitigate buffer overflows

Security mechanisms rearrange variable
allocation where possible to ensure
cookies work, prevent pointer overwrites

alloca(int sz); → dynamic stack allocation

Void func(int sz){ int buf[sz]; };
C99 variable-length arrays ->Phrack 63-
13

Heap allocation

C-style

buf = malloc(sz);

free(buf);

C++

buf = new char[sz];

delete []buf

Heap Zoo

Linux – doug lea malloc based
implementations

FreeBSD – phkmalloc

Windows – RTL heap

Mac OS -- Bertrand Serlet

Older unixes → (System V) - tree based
heap

Heap Misc Info

Pointers, flags, and other control
information used to manage the
chunks

Control information can be used
for generic exploitation (”Once
upon a free()...” Phrack 57-9)

More Info

realloc() is extremely tricky to use
correctly

Forgetting to free memory is a memory
leak

Memory allocation functions fail

Memory corruption

Data is overwritten or modified to enter
an ”undefined” program state.

Causes include arithmetic errors, bad
error checking, uninitialized memory
usage, and unintended code flow paths.

Not a recoverable state (some programs
will try anyway)

What is wrong with
this code?

int main(int argc, char *argv[]){
 char buf[256];
 strcpy(buf,argv[1]);
}

A typical attack
scenario

1) Hijack control flow information
(function pointer, return address) with
memory corruption

2) Redirect execution to an unexpected
state or injected code (shellcode)

3) Install backdoor, maintain access

Common Terminology

Stack overflow → ran out of stack
memory (recursive function)

Buffer overflow/overrun → data is copied
beyond the end of the buffer

Buffer underrun → data is copied before
the start of the buffer

Spot the bug in thttpd
defang

static void defang (char* str, char* dfstr, int dfsize)
{
 char* cp1; char* cp2;
 for (cp1 = str, cp2 = dfstr; *cp1 != '\0' && cp2 - dfstr < dfsize - 1; ++cp1, +
+cp2)
 {
 switch (*cp1)
 {
 case '<':
 *cp2++ = '&'; *cp2++ = 'l'; *cp2++ = 't'; *cp2 = ';'; break;
 case '>':
 *cp2++ = '&'; *cp2++ = 'g'; *cp2++ = 't'; *cp2 = ';'; break;
 default:

 *cp2 = *cp1; break; }
 }
 *cp2 = '\0';
 }

Ignoring return values
has security
implications

Improper privilege separation

Unexpected system states

Memory corruption

Uninitialized memory

Trivia

 initgroups(USER, pw->pw_gid);

 setgid(pw->pw_gid);

 setuid(pw->pw_uid);

 execv("/bin/sh",0);

Which functions can fail?

Hint: only one
function to misuse

void func(int fd){
char buf[256];
char *ptr = buf, *end = &buf[sizeof(buf)];
buf = ptr;
 while(ptr < end){
 ptr += read(fd, ptr, 1);
 }
}

See Lars' CVE-2009-0017

Typos

Typos in C, C++ can be hilarious

Only takes a few characters

Awesome.

Isn't this cute?

if(authenticated=1){
 do stuff
}

This too, right?

if(!authenticated);
 return

What's wrong with
this code?

char * func(int fd)
{
 unsigned int len;
 len = read_data(4);
 char *data = malloc(len);
 recv(fd, &data, len, 0);
 return data;
}

Spoiler page

Similar to ActiveX bugs that came out
last summer

Ironically code is from ”security
enhancements”

http://arstechnica.com/microsoft/news/2009/
07/a-single-extra-resulted-in-ie-exploit.ars

hr = pStream->Read((void*)&pbArray,
(ULONG)cbSize, NULL);

should be
hr = pStream->Read((void*)pbArray,

(ULONG)cbSize, NULL);

Oops

Obj *o = new obj[100];

delete o;

Constants

#define SZ 40

char buf[20]; strncpy(buf, src, SZ-2);
buf[SZ-1] = 0;

Constants are signed by default (0 vs
0U).

Upcoming

Advanced heap issues

Off by ones

Integer safety

underflows, overflows, signedness

truncation, typecasting

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

