
FUZZING

Adam Comella
Jay Smith

Resources

http://www.fuzzing.org/

Security auditing methods

 Source code analysis

 RATS, Jlint, etc.

 Binary analysis

 Static

 IDA Pro, Bug Scam, etc.

 Dynamic

 Debugging, hit tracing, fuzzing

Security auditing categories

 Whitebox

 Source code is available

 Graybox

 Only compiled binary available

 Blackbox

 Control over input

 Output can be observed

What is fuzzing?

 Fuzzing is the process of automatically
feeding data to a program with the intent of
causing the program to crash or expose a bug

 Data can be

 Random data

 Pre-generated test cases

 Legitimate input data that has been mutated

 “Smart” data generated by a grammar

WTFuzz

 Fuzzing can be traced back to the University of
Wisconsin in 1988

 Professor Barton Miller’s “Operating System Utility
Program Reliability – The Fuzz Generator” assignment

 1999 – Oulu University starts PROTOS

 2002 – Dave Aitel’s SPIKE

 2004 – Mangleme by Michael Zalewski

 2005 – FileFuzz, SPIKEfile, Codenomicon

 2006 – ActiveX fuzzers COMRaider and AxMan

Fuzzing targets

 File formats

 Network protocols

 Command-line args

 Environment variables

 Web apps

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

 Another simple fuzz testing method is
hooking getenv()

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

 Another simple fuzz testing method is
hooking getenv()

 How about this method?

Other local fuzzing targets

 argv[0] is sometimes trusted too much

 Command line args can also be fuzzed

 iFuzz command line fuzzer

 Usage output can be analyzed to aid this type of
fuzzing

 If the program uses getopt() then more info
can be leveraged

Sulley – A fuzzing framework

 Named after this

fuzzy guy 

Sulley - A Fuzzing Framework

 Named after this
fuzzy guy 

14

Sulley - A Fuzzing Framework

 Provides an environment for:

 Pregaming

 Describing data and protocols

 Fuzzing

 Mutating data

 Logging crashes and all data generated

 Restarting the target when it crashes

 Postmortem

 Investigating the cause of a crash

15

Describing Data

 Data is described by a sequence of Python
functions

 “hello, 24” described by:

 s_string(“hello”)

 s_delim(“,”)

 s_long(24)

 Each of the above 3 fields get mutated during
fuzzing

16

Primitives

 The basic foundations of your data

 Integers

 s_char(), s_short(), s_long(), s_double()

 Strings

 s_string()

 Static values

 s_static(), s_binary()

 Misc

 s_delim(), s_random()
17

Primitives - Integers

 Functions

 s_char(), s_short(), s_long(), s_double()

 Required parameters

 default value - s_short(24)

 Other options: endianness, signed, use full
range when fuzzing

 Mutations

 smallest values in the range (0, 1, etc.)

 largest values in the range (254, 255, etc. for char)

18

Primitives - Strings

 Functions

 s_string()

 Required parameters

 default value - s_short(“hello, world”)

 Other options: length, pad character

 Mutations (strings that cause problems)

 a variety of long strings (AAAAA...)

 format strings (%n%n%n...)

 empty string (“”)

19

Primitives - Static

 Never mutate during fuzzing

 s_static()

 Takes a string: s_static(“HTTP”)

 s_binary()

 Takes input in a variety of hexadecimal formats

 s_binary("0xde be ef \xca fe 00 01 0xba0xdd f0
0d")

 Mutations

 None

20

Primitives - Delimiters

 s_delim()

 Required parameters

 original delimiter: s_delim(“:”)

 Mutations

 omitted delimiter (“”)

 repeated delimiter (“::::::::”)

 other common delimiters (“!”, “=”, “;”)

21

Primitives - Random

 s_random()

 Generates a random chunk of data of a
certain length

 Required parameters

 initial value

 minimum length

 maximum length

 example: s_random(“GET”, 10, 15)

22

A Problem

 In describing a protocol, what if we need to
include

 the length of a string?

 the checksum of a section of data?

 Our data is constantly being mutated so how
can we possibly include these values?

 This is what blocks are for!

23

A Solution - Blocks

 Give a name to a section of data

 To include a size or checksum in your data
refer to the data block by name

 s_block_start(name_of_block)

 s_block_end()

24

Block Helpers - Sizers

 s_size(block_name)

 Include the size of a block in your data

 Other options

 how many bytes is the size field?

 endianness

 include length of size field in size?

 fuzz this parameter? (default is NO)

25

Block Helpers - Checksums

 s_checksum(block_name)

 Include the checksum of a block in your data

 Other options

 algorithm (crc32, adler32, md5, sha1, custom)

 endianness

 checksum length

26

Block Helpers - Repeaters

 s_repeat(block_name, min_reps, max_reps)

 Repeat a block a variable number of times

 Other options

 step - how much should reps be incremented for
each fuzz?

27

Block Helpers - Example

 Protocol

 types: [byte][string][short][crc32]

 values: [length-of-name][user-
name][health][cksm]

 if s_block_start(“packet”):

 s_size(“user_name”)

 if s_block_start(“user_name”):

s_string(“a user name”)

 s_block_end()

 s_short(55)

 s_block_end()

 s_checksum(“packet”)

28

Groups

 Specify a list of static values

 Attach group to a block: the block will cycle
through the values of the group as a prefix

 Useful for representing verbs and opcodes

29

Groups - HTTP Request
Example
 s_group(“http_verbs”, [“GET”, “POST”, “HEAD”])

 if s_block_start(“body”, group=”http_verbs”):

s_delim(“ “) s_delim(“/”) s_string(“index.html”)

s_delim(“ “) s_string(“HTTP”) s_delim(“/”)

s_string(“1”) s_delim(“.”) s_string(“1”)

s_static(“\r\n\r\n”)

s_block_end()

 example outputs:

GET /index.html HTTP/1.1

POST /index.html HTTP/1.1
30

Requests

 Primitives -> Blocks -> Requests

 Recall primitives are the simplest unit for
describing data

 A request

 is built up from blocks and primitives

 generally describes a complete conversation you
may have with a target

 When fuzzing you will tell Sulley “fuzz this
request on this target”

31

Requests - Syntax

 s_initialize(request_name)

 Creates request_name

 Makes request_name the current request

 When primitives and blocks are described,
they are added to the current request

 Requests are terminated by the next call to
s_initialize()

 Last request is unterminated

32

Monitoring while Fuzzing

 Process Monitor

 Logs crashes (we’re fuzzing to find crashes)

 Restarts target when it crashes (so we can keep
fuzzing without human intervention)

 Network Monitor

 Logs all network traffic associated with your fuzz
(makes it easier to reproduce & understand
crashes)

33

Monitoring while Fuzzing

 Virtual Machine Monitor

 Useful when running the target in a VM

 Start & stop VM

 Restore VM to stable snapshot

34

Drivers - Bringing it All
Together

 In the driver, you:

 Select the target

 Setup the monitors

 process monitor, network monitor, VM monitor

 Select the requests to fuzz

 Fuzz!

 Let’s look at simple_driver.py

35

Postmortem

 We have some crashes that we must
investigate!

 crashbin_explorer.py

 Lists crashes from a fuzz

 Investigate stack and register states at time of
crash

36

Postmortem - Isolating
Malicious Data

 Crash may happen after 100th test case

 sending all 100 test cases to play with crash is too
much!

 Try sending just the 100th test case but it may
not cause a crash

 need an earlier test case to put target into
vulnerable state

37

When to fuzz

When to fuzz

 During a 8 hour security competition?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

 Hired to do QA on a piece of software?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

 Hired to do QA on a piece of software?

 In your spare time?

404 Bug not found

 Misconfiguration bugs

 Design flaws

Take away

 A good fuzzer should

 Have a flexible way to describe a protocol or
format

 Log all test cases

 Monitor the target for signs of a bug

 Correlate test cases to crashes

Lab on Monday

 Using Sulley to fuzz a protocol

 Sulley works on Windows and Mac OS X

