
FUZZING

Adam Comella
Jay Smith

Resources

http://www.fuzzing.org/

Security auditing methods

 Source code analysis

 RATS, Jlint, etc.

 Binary analysis

 Static

 IDA Pro, Bug Scam, etc.

 Dynamic

 Debugging, hit tracing, fuzzing

Security auditing categories

 Whitebox

 Source code is available

 Graybox

 Only compiled binary available

 Blackbox

 Control over input

 Output can be observed

What is fuzzing?

 Fuzzing is the process of automatically
feeding data to a program with the intent of
causing the program to crash or expose a bug

 Data can be

 Random data

 Pre-generated test cases

 Legitimate input data that has been mutated

 “Smart” data generated by a grammar

WTFuzz

 Fuzzing can be traced back to the University of
Wisconsin in 1988

 Professor Barton Miller’s “Operating System Utility
Program Reliability – The Fuzz Generator” assignment

 1999 – Oulu University starts PROTOS

 2002 – Dave Aitel’s SPIKE

 2004 – Mangleme by Michael Zalewski

 2005 – FileFuzz, SPIKEfile, Codenomicon

 2006 – ActiveX fuzzers COMRaider and AxMan

Fuzzing targets

 File formats

 Network protocols

 Command-line args

 Environment variables

 Web apps

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

 Another simple fuzz testing method is
hooking getenv()

Getting your feet wet

 Simply piping /dev/urandom to a target
program is one method of fuzz testing

 How effective is this?

 Another simple fuzz testing method is
hooking getenv()

 How about this method?

Other local fuzzing targets

 argv[0] is sometimes trusted too much

 Command line args can also be fuzzed

 iFuzz command line fuzzer

 Usage output can be analyzed to aid this type of
fuzzing

 If the program uses getopt() then more info
can be leveraged

Sulley – A fuzzing framework

 Named after this

fuzzy guy

Sulley - A Fuzzing Framework

 Named after this
fuzzy guy

14

Sulley - A Fuzzing Framework

 Provides an environment for:

 Pregaming

 Describing data and protocols

 Fuzzing

 Mutating data

 Logging crashes and all data generated

 Restarting the target when it crashes

 Postmortem

 Investigating the cause of a crash

15

Describing Data

 Data is described by a sequence of Python
functions

 “hello, 24” described by:

 s_string(“hello”)

 s_delim(“,”)

 s_long(24)

 Each of the above 3 fields get mutated during
fuzzing

16

Primitives

 The basic foundations of your data

 Integers

 s_char(), s_short(), s_long(), s_double()

 Strings

 s_string()

 Static values

 s_static(), s_binary()

 Misc

 s_delim(), s_random()
17

Primitives - Integers

 Functions

 s_char(), s_short(), s_long(), s_double()

 Required parameters

 default value - s_short(24)

 Other options: endianness, signed, use full
range when fuzzing

 Mutations

 smallest values in the range (0, 1, etc.)

 largest values in the range (254, 255, etc. for char)

18

Primitives - Strings

 Functions

 s_string()

 Required parameters

 default value - s_short(“hello, world”)

 Other options: length, pad character

 Mutations (strings that cause problems)

 a variety of long strings (AAAAA...)

 format strings (%n%n%n...)

 empty string (“”)

19

Primitives - Static

 Never mutate during fuzzing

 s_static()

 Takes a string: s_static(“HTTP”)

 s_binary()

 Takes input in a variety of hexadecimal formats

 s_binary("0xde be ef \xca fe 00 01 0xba0xdd f0
0d")

 Mutations

 None

20

Primitives - Delimiters

 s_delim()

 Required parameters

 original delimiter: s_delim(“:”)

 Mutations

 omitted delimiter (“”)

 repeated delimiter (“::::::::”)

 other common delimiters (“!”, “=”, “;”)

21

Primitives - Random

 s_random()

 Generates a random chunk of data of a
certain length

 Required parameters

 initial value

 minimum length

 maximum length

 example: s_random(“GET”, 10, 15)

22

A Problem

 In describing a protocol, what if we need to
include

 the length of a string?

 the checksum of a section of data?

 Our data is constantly being mutated so how
can we possibly include these values?

 This is what blocks are for!

23

A Solution - Blocks

 Give a name to a section of data

 To include a size or checksum in your data
refer to the data block by name

 s_block_start(name_of_block)

 s_block_end()

24

Block Helpers - Sizers

 s_size(block_name)

 Include the size of a block in your data

 Other options

 how many bytes is the size field?

 endianness

 include length of size field in size?

 fuzz this parameter? (default is NO)

25

Block Helpers - Checksums

 s_checksum(block_name)

 Include the checksum of a block in your data

 Other options

 algorithm (crc32, adler32, md5, sha1, custom)

 endianness

 checksum length

26

Block Helpers - Repeaters

 s_repeat(block_name, min_reps, max_reps)

 Repeat a block a variable number of times

 Other options

 step - how much should reps be incremented for
each fuzz?

27

Block Helpers - Example

 Protocol

 types: [byte][string][short][crc32]

 values: [length-of-name][user-
name][health][cksm]

 if s_block_start(“packet”):

 s_size(“user_name”)

 if s_block_start(“user_name”):

s_string(“a user name”)

 s_block_end()

 s_short(55)

 s_block_end()

 s_checksum(“packet”)

28

Groups

 Specify a list of static values

 Attach group to a block: the block will cycle
through the values of the group as a prefix

 Useful for representing verbs and opcodes

29

Groups - HTTP Request
Example
 s_group(“http_verbs”, [“GET”, “POST”, “HEAD”])

 if s_block_start(“body”, group=”http_verbs”):

s_delim(“ “) s_delim(“/”) s_string(“index.html”)

s_delim(“ “) s_string(“HTTP”) s_delim(“/”)

s_string(“1”) s_delim(“.”) s_string(“1”)

s_static(“\r\n\r\n”)

s_block_end()

 example outputs:

GET /index.html HTTP/1.1

POST /index.html HTTP/1.1
30

Requests

 Primitives -> Blocks -> Requests

 Recall primitives are the simplest unit for
describing data

 A request

 is built up from blocks and primitives

 generally describes a complete conversation you
may have with a target

 When fuzzing you will tell Sulley “fuzz this
request on this target”

31

Requests - Syntax

 s_initialize(request_name)

 Creates request_name

 Makes request_name the current request

 When primitives and blocks are described,
they are added to the current request

 Requests are terminated by the next call to
s_initialize()

 Last request is unterminated

32

Monitoring while Fuzzing

 Process Monitor

 Logs crashes (we’re fuzzing to find crashes)

 Restarts target when it crashes (so we can keep
fuzzing without human intervention)

 Network Monitor

 Logs all network traffic associated with your fuzz
(makes it easier to reproduce & understand
crashes)

33

Monitoring while Fuzzing

 Virtual Machine Monitor

 Useful when running the target in a VM

 Start & stop VM

 Restore VM to stable snapshot

34

Drivers - Bringing it All
Together

 In the driver, you:

 Select the target

 Setup the monitors

 process monitor, network monitor, VM monitor

 Select the requests to fuzz

 Fuzz!

 Let’s look at simple_driver.py

35

Postmortem

 We have some crashes that we must
investigate!

 crashbin_explorer.py

 Lists crashes from a fuzz

 Investigate stack and register states at time of
crash

36

Postmortem - Isolating
Malicious Data

 Crash may happen after 100th test case

 sending all 100 test cases to play with crash is too
much!

 Try sending just the 100th test case but it may
not cause a crash

 need an earlier test case to put target into
vulnerable state

37

When to fuzz

When to fuzz

 During a 8 hour security competition?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

 Hired to do QA on a piece of software?

When to fuzz

 During a 8 hour security competition?

 During a 48 hour security audit?

 Hired to do QA on a piece of software?

 In your spare time?

404 Bug not found

 Misconfiguration bugs

 Design flaws

Take away

 A good fuzzer should

 Have a flexible way to describe a protocol or
format

 Log all test cases

 Monitor the target for signs of a bug

 Correlate test cases to crashes

Lab on Monday

 Using Sulley to fuzz a protocol

 Sulley works on Windows and Mac OS X

