Adam Comella
Jay Smith

FUZZING




Resources

Brute Force Vulnerability Discovery htt p ://WWW fU ZZl n g . O rg/

MICHAEL SUTTON
ADAM GREENE
PEDRAM AMINI




Security auditing methods

= Source code analysis
RATS, Jlint, etc.

= Binary analysis
Static
IDA Pro, Bug Scam, etc.
Dynamic
Debugging, hit tracing, fuzzing




Security auditing categories

= Whitebox
Source code is available

= Graybox

Only compiled binary available

= Blackbox

Control over input

Output can be observed




What 1s fuzzing?

» Fuzzing is the process of automatically
feeding data to a program with the intent of
causing the program to crash or expose a bug

= Datacanbe
Random data
Pre-generated test cases
Legitimate input data that has been mutated
"Smart” data generated by a grammar



WTFUzz

* Fuzzing can be traced back to the University of
Wisconsin in 1988

Professor Barton Miller’s "Operating System Utility
Program Reliability — The Fuzz Generator” assignment

* 1999 — Oulu University starts PROTOS

= 2002 — Dave Aitel’'s SPIKE

» 2004 — Mangleme by Michael Zalewski

= 2005 — FileFuzz, SPIKEfile, Codenomicon

= 2006 —ActiveX fuzzers COMRaider and AxMan




Fuzzing targets

= File formats

= Network protocols

= Command-line args

= Environment variables
= Web apps




Getting your feet wet

= Simply piping /dev/urandom to a target
program is one method of fuzz testing




Getting your feet wet

= Simply piping /dev/urandom to a target
program is one method of fuzz testing
How effective is this?




Getting your feet wet

= Simply piping /dev/urandom to a target
program is one method of fuzz testing
How effective is this?

= Another simple fuzz testing method is
hooking getenv ()




Getting your feet wet

= Simply piping /dev/urandom to a target
program is one method of fuzz testing
How effective is this?

= Another simple fuzz testing method is
hooking getenv ()

How about this method?




Other local fuzzing targets

= argv[0] is sometimes trusted too much

= Command line args can also be fuzzed

iIFuzz command line fuzzer
Usage output can be analyzed to aid this type of
fuzzing

If the program uses getopt () then more info
can be leveraged




= Named after this
fuzzy quy =2

Sulley - A fuzzing framework



Sulley - A Fuzzing Framework

= Named after this
fuzzy quy =2

14



Sulley - A Fuzzing Framework

* Provides an environment for:
° Pregaming
* Describing data and protocols
= Fuzzing
- Mutating data

* Logging crashes and all data generated
- Restarting the target when it crashes
© Postmortem

- Investigating the cause of a crash




Describing Data

» Datais described by a sequence of Python
functions
= “hello, 24" described by:
= s_string(“hello”)
o s_delim(“,")
= s_long(24)
= Each of the above 3 fields get mutated during

fuzzing




Primitives

* The basic foundations of your data
= |ntegers

= s_char(), s_short(), s_long(), s_double()
= Strings

@ s_string()
= Static values

= s_static(), s_binary()

= Misc




Primitives - Integers

= Functions
= s_char(), s_short(), s_long(), s_double()
» Required parameters

= default value - s_short(24)

= Other options: endianness, signed, use full
range when fuzzing

= Mutations

- smallest values in the range (o, 1, etc.)




Primitives - Strings

= Fynctions
@ s_string()

» Required parameters

= default value - s_short(“hello, world"”)
= Other options: length, pad character

= Mutations (strings that cause problems)

= avariety of long strings (AAAAA...)
- format strings (%n%n%n...)




Primitives - Static

= Never mutate during fuzzing
= 5 static()
= Takes a string: s_static("HTTP")
= s_binary()
= Takes inputin a variety of hexadecimal formats

= s_binary("oxde be ef \xca fe 0o 01 oxbaoxdd fo
0C ||)

= Mutations




Primitives - Delimiters

= s _delim()
» Required parameters
= original delimiter: s_delim(":")

= Mutations

= omitted delimiter (**)
° repeated delimiter (*::::::::")

= other common delimiters (“1”, “=" ":")

A




Primitives - Random

= 5 random()

= Generates a random chunk of data of a
certain length

» Required parameters
= initial value

= minimum length

= maximum length

= example: s_random(“GET", 10, 15)




A Problem

* |n describing a protocol, what if we need to
include
= the length of a string?

= the checksum of a section of data?

= Qurdatais constantly being mutated so how
can we possibly include these values?

= This is what blocks are for!




A Solution - Blocks

= Give a name to a section of data

* Toinclude a size or checksum in your data
refer to the data block by name

= 5 block start(hname_of block)
= 5 block_end()




Block Helpers - Sizers

= 5 size(block_name)
* Include the size of a block in your data
= Other options

= how many bytes is the size field?

= endianness
= include length of size field in size?

= fuzz this parameter? (default is NO)




Block Helpers - Checksums

= 5 checksum(block_name)
* Include the checksum of a block in your data

= Other options
= algorithm (crc32, adler32, mds, shaz, custom)
= endianness

= checksum length




Block Helpers - Repeaters

= s_repeat(block_name, min_reps, max_reps)
» Repeat a block a variable number of times

= Other options

= step - how much should reps be incremented for
each fuzz?




Block Helpers - Example

" Protocol
O types: [byte][string][short][crc32]
O values: [length-of-name][user-
name][health][cksm]
= if s_block_start(“packet”):
o s_size(“user_name”)
o if s_block_start(“user_name”):
“s_string(“a user name”)
o s_block_end()
© s_short(s5)
= s block_end()




Groups

= Specify a list of static values

= Attach group to a block: the block will cycle
through the values of the group as a prefix

= Useful for representing verbs and opcodes




Groups - HTTP Request

Example

= s_group(“http_verbs”, ["GET", "POST", "HEAD"])

= if s_block_start(*body”, group="http_verbs"):
s_delim(" ) s_delim("/") s_string(“index.html")
*s_delim(" ") s_string("HTTP") s_delim("/")
*s_string(*1"”) s_delim(".”) s_string("“1")
*s_static(™M\r\n\r\n")

°s_block_end()

" example outputs:
“GET /index.htm| HTTP/1.1




Requests

= Primitives -> Blocks -> Requests

= Recall primitives are the simplest unit for
describing data

= Arequest
= is built up from blocks and primitives
= generally describes a complete conversation you
may have with a target

= When fuzzing you will tell Sulley “fuzz this

/4




Requests - Syntax

» s_initialize(request_name)
= Creates request_name
= Makes request_name the current request

= When primitives and blocks are described,
they are added to the current request

= Requests are terminated by the next call to
s_initialize()

= Lastrequestis unterminated




Monitoring while Fuzzing

= Process Monitor

= Logs crashes (we're fuzzing to find crashes)

= Restarts target when it crashes (so we can keep
fuzzing without human intervention)

= Network Monitor

= Logs all network traffic associated with your fuzz

(makes it easier to reproduce & understand
crashes)




Monitoring while Fuzzing

= Virtual Machine Monitor

= Useful when running the targetina VM
= Start & stop VM
= Restore VM to stable snapshot




Drivers - Bringing it All
Together

* |n the driver, you:
= Select the target
= Setup the monitors
* process monitor, network monitor, VM monitor
= Select the requests to fuzz
@ Fuzz!

» |et's look at simple_driver.py




Postmortem

= \We have some crashes that we must
Investigate!

= crashbin_explorer.py

= Lists crashes from a fuzz

= Investigate stack and register states at time of
crash




Postm

= Crash may

ortem - Isolating

Malicious Data

nappen after 10oth test case

= sending al
much!

100 test cases to play with crash is too

* Try sending just the 100th test case but it may
not cause a crash

= need an earlier test case to put target into
vulnerable state




When to fuzz




When to fuzz

= During a 8 hour security competition?




When to fuzz

= During a 8 hour security competition?

» During a 48 hour security audit?




When to fuzz

= During a 8 hour security competition?

» During a 48 hour security audit?

* Hired to do QA on a piece of software?




When to fuzz

= During a 8 hour security competition?

» During a 48 hour security audit?

* Hired to do QA on a piece of software?

" |n your spare time?




404 Bug not found

= Misconfiguration bugs

= Design flaws




Take away

= A good fuzzer should

Have a flexible way to describe a protocol or
format

Log all test cases
Monitor the target for signs of a bug
Correlate test cases to crashes




Lab on Monday

= Using Sulley to fuzz a protocol
= Sulley works on Windows and Mac OS X




