

AR, RG, AZ, JS, AC

Reversing Tips

Good Challenge?

● Yellow Wire – easy
● Green Wire – hard

according to
Noizeman, but you
guys did it in ~1hr

● Blue Wire – you
guys did it after
class

● Red Wire - ???

We Still Made It Too Easy

● Full Symbols
– Function names

– Global variables

● Dynamically linked
binary

● Realistic?

Reversing in the Dark

● Whittle away,
instruction by
instruction

● 100k program ~=
20k instructions

– 1MB ?

How do you reverse a large,
symbol-less program?

● Invite these guys?

Start reversing from easy mode

● Use binary's data
against it

– Left over debug
output

● Find and analyze
interesting data
references

Embedded System Trivia

● 80c32 Tattoo from
a Removal
Machine

● Serial console
returns uppercase
input

● Which function did
we find first?

Identify the magic bytes we used
to find this function:

Answer

● ~0x20 == 0xdf
– Common bit twiddling trick

– Ironically, it was the first we tried

● 0x6a/0x7b would have been good choices
too

– 'a'/'z'+1 → range values

●

Dynamic Analysis

● Isolate code of
interest

– Flow-graph
leading to
point of crash

– Easily Detect
Attack Surface
Entry Points

● Careful when
analyzing malware

Work Backwards

● Set
software/hardware
breakpoints on
interesting data

● Look at stack trace
– Should reveal

relevant
functions

Be Creative
● Patch out uninteresting code
● Execute portions of your binary from

testing harness
– Ctypes.CDLL

– Ruby DLL loading

● ???

TodoHT Demo

● Hit-tracing a static,
stripped version of
the bomb

Other Demos

● ...

Tips on finding super secret key
algorithms

● Specialized math
instructions

– Extended
instruction set
SSE, MMX

● Magic bytes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

