
C. Varela; Adapted with permission from S. Haridi and P. Van Roy 1

Declarative Concurrency (VRH 4)

Carlos Varela
Rensselaer Polytechnic Institute

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

April 29, 2010

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 2

Review of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language, Oz)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is

ok, else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 3

Concurrency
• Some programs are best written as a set of activities that

run independently (concurrent programs)
• Concurrency is essential for interaction with the external

environment
• Examples includes GUI (Graphical User Interfaces),

operating systems, web services
• Also programs that are written independently but interact

only when needed (client-server, peer-to-peer applications)
• This lecture is about declarative concurrency, programs

with no observable nondeterminism, the result is a function
• Independent procedures that execute on their pace and may

communicate through shared dataflow variables

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 4

Overview

• Programming with threads
– The model is augmented with threads
– Programming techniques: stream communication,

order-determining concurrency, coroutines, concurrent
composition

• Lazy execution
– demand-driven computations, lazy streams, and list

comprehensions
• Soft real-time programming

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 5

The sequential model

w = a
z = person(age: y)
x
y = 42
u

Single-assignment
store

Semantic
Stack

Statements are
executed sequentially
from a single semantic
stack

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 6

The concurrent model

w = a
z = person(age: y)
x
y = 42
u

Single-assignment
store

Semantic
Stack 1

Semantic
Stack N

Multiple semantic
stacks (threads)

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 7

Concurrent declarative model

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

| 〈x〉 = 〈v〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| proc {〈x〉 〈y1〉 … 〈yn〉 } 〈s1〉 end procedure introduction
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| { 〈x〉 〈y1〉 … 〈yn〉 } procedure application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching
| thread 〈s1〉 end thread creation

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 8

The concurrent model

Single-assignment
store

ST
thread 〈s1〉 end,ETop of Stack, Thread i

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 9

The concurrent model

Single-assignment
store

STTop of Stack, Thread i 〈s1〉,E

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 10

Basic concepts
• The model allows multiple statements to execute ”at the

same time”.
• Imagine that these threads really execute in parallel, each

has its own processor, but share the same memory
• Reading and writing different variables can be done

simultaneously by different threads, as well as reading the
same variable

• Writing the same variable is done sequentially
• The above view is in fact equivalent to an interleaving

execution: a totally ordered sequence of computation steps,
where threads take turns doing one or more steps in
sequence

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 11

Causal order
• In a sequential program all execution states are totally

ordered
• In a concurrent program all execution states of a given

thread are totally ordered
• The execution state of the concurrent program as a whole

is partially ordered

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 12

Total order
• In a sequential program all execution states are totally

ordered

computation step

sequential
execution

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 13

Causal order in the declarative
model

• In a concurrent program all execution states of a given
thread are totally ordered

• The execution state of the concurrent program is partially
ordered

computation step

thread T1

thread T2

thread T3

fork a thread

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 14

Causal order in the declarative
model

computation step

thread T1

thread T2

thread T3

fork a thread

bind a dataflow variable

synchonize on a dataflow variable

x

y

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 15

Nondeterminism
• An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
• Nondeterminism appears naturally when there is

concurrent access to shared state

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 16

Example of nondeterminism

time

Thread 1

x = 1
x
y = 5

store

time

Thread 2

x = 3

The thread that binds x first will continue,
the other thread will raise an exception

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 17

Nondeterminism
• An execution is nondeterministic if there is a computation

step in which there is a choice what to do next
• Nondeterminism appears naturally when there is

concurrent access to shared state
• In the concurrent declarative model when there is only one

binder for each dataflow variable, the nondeterminism is
not observable on the store (i.e. the store develops to the
same final results)

• This means for correctness we can ignore the concurrency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 18

Scheduling
• The choice of which thread to execute next and for how

long is done by a part of the system called the scheduler
• A thread is runnable if its next statement to execute is not

blocked on a dataflow variable, otherwise the thread is
suspended

• A scheduler is fair if it does not starve a runnable thread,
i.e. all runnable threads eventually execute

• Fair scheduling makes it easy to reason about programs
and program composition

• Otherwise some correct program (in isolation) may never
get processing time when composed with other programs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 19

The semantics
• In the sequential model we had:

(ST , σ)
ST is a stack of semantic statements
σ is the single assignment store

• In the concurrent model we have:
(MST , σ)

MST is a (multi)set of stacks of semantic statements
σ is the single assignment store

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 20

The initial execution state

({ [(〈s〉,∅)] }, ∅)

statement

stack

multiset
store

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 21

Execution (the scheduler)
• At each step, one runnable semantic stack is selected from

MST (the multiset of stacks), call it ST, s.t.
 MST = ST ∪ MST’

• Assume the current store is σ, one computation step is
done that transforms ST to ST’ and σ to σ’

• The total computation state is transformed from (MST, σ)
to (ST’ ∪ MST’, σ’)

• Which stack is selected, and how many steps are taken is
the task of the scheduler, a good scheduler should be fair,
i.e., each runnable ’thread’ will eventually be selected

• The computation stops when there are no runnable stacks

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 22

Example of runnable threads
proc {Loop P N}
 if N > 0 then
 {P} {Loop P N-1}
 else skip end
end
thread {Loop

proc {$} {Show 1} end
 1000}

end
thread {Loop

proc {$} {Show 2} end
1000}

end

• This program will
interleave the execution
of two threads, one
printing 1, and the other
printing 2

• We assume a fair
scheduler

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 23

Dataflow computation
• Threads suspend on data unavailability in

dataflow variables
• The {Delay X} primitive makes the thread

suspends for X milliseconds, after that, the
thread is runnable

declare X
{Browse X}
local Y in
 thread {Delay 1000} Y = 10*10 end
 X = Y + 100*100
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 24

Illustrating dataflow computation

• Enter incrementally the
values of X0 to X3

• When X0 is bound the
thread will compute
Y0=X0+1, and will
suspend again until X1 is
bound

declare X0 X1 X2 X3
{Browse [X0 X1 X2 X3]}
thread
 Y0 Y1 Y2 Y3
in
 {Browse [Y0 Y1 Y2 Y3]}
 Y0 = X0 + 1
 Y1 = X1 + Y0
 Y2 = X2 + Y1
 Y3 = X3 + Y2
 {Browse completed}
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 25

Concurrent Map
fun {Map Xs F}

 case Xs

 of nil then nil

 [] X|Xr then
thread {F X} end|{Map Xr F}

 end

end

• This will fork a thread for each
individual element in the input
list

• Each thread will run only if
both the element X and the
procedure F is known

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 26

Concurrent Map Function
fun {Map Xs F}

 case Xs
 of nil then nil
 [] X|Xr then thread {F X} end |{Map Xr F}
 end

end

• What this looks like in the kernel language:
proc {Map Xs F Rs}

 case Xs
 of nil then Rs = nil
 [] X|Xr then R Rr in
 Rs = R|Rr
 thread {F X R} end
 {Map Xr F Rr}
 end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 27

How does it work?
• If we enter the following statements:

declare F X Y Z
{Browse thread {Map X F} end}

• A thread executing Map is created.
• It will suspend immediately in the case-statement because

X is unbound.
• If we thereafter enter the following statements:

X = 1|2|Y
fun {F X} X*X end

• The main thread will traverse the list creating two threads
for the first two arguments of the list

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 28

How does it work?

• The main thread will traverse the list creating two threads
for the first two arguments of the list:
thread {F 1} end, and thread {F 2} end,

After entering:
Y = 3|Z
Z = nil

the program will complete the computation of the main
thread and the newly created thread thread {F 3} end,
resulting in the final list [1 4 9].

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 29

Simple concurrency with
dataflow

• Declarative programs can be
easily made concurrent

• Just use the thread statement
where concurrency is needed

fun {Fib X}

 if X=<2 then 1

 else

 thread {Fib X-1} end + {Fib X-2}

 end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 30

Understanding why
fun {Fib X}

 if X=<2 then 1

 else F1 F2 in

 F1 = thread {Fib X-1} end
 F2 = {Fib X-2}

 F1 + F2
end

end

Dataflow dependency

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 31

Execution of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Fork a thread

Synchronize on
result

Running thread

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 32

Threads and Garbage Collection

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 33

Streams
• A stream is a sequence of messages
• A stream is a First-In First-Out (FIFO) channel
• The producer augments the stream with new messages, and

the consumer reads the messages, one by one.

x5 x4 x3 x2 x1
producer consumer

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 34

Stream Communication I

• The data-flow property of Oz easily enables writing
threads that communicate through streams in a producer-
consumer pattern.

• A stream is a list that is created incrementally by one
thread (the producer) and subsequently consumed by one
or more threads (the consumers).

• The consumers consume the same elements of the stream.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 35

Stream Communication II
• Producer, produces incrementally the elements
• Transducer(s), transform(s) the elements of the stream
• Consumer, accumulates the results

producer transducer transducer consumer

thread 1 thread 2 thread 3 thread N

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 36

Stream communication patterns
• The producer, transducers, and the consumer can, in

general, be described by certain program patterns
• We show various patterns

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 37

Producer
fun {Producer State}

 if {More State} then

 X = {Produce State} in

 X | {Producer {Transform State}}

else nil end

end
• The definition of More, Produce, and Transform is

problem dependent
• State could be multiple arguments
• The above definition is not a complete program!

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 38

Example Producer
fun {Generate N Limit}

 if N=<Limit then

 N | {Generate N+1 Limit}

 else nil end

end

• The State is the two arguments N and Limit
• The predicate More is the condition N=<Limit
• The predicate Produce is the identity function on N
• The Transform function (N,Limit) ⇒ (N+1,Limit)

fun {Producer State}

 if {More State} then

 X = {Produce State} in

 X | {Producer {Transform State}}

 else nil end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 39

Consumer Pattern
fun {Consumer State InStream}

 case InStream

 of nil then {Final State}

 [] X | RestInStream then

 NextState = {Consume X State} in

 {Consumer NextState RestInStream}

 end

end
• Final and Consume are problem dependent

The consumer suspends until
InStream is either a cons or a nil

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 40

Example Consumer

fun {Sum A Xs}

 case Xs

 of nil then A

 [] X|Xr then {Sum A+X Xr}

 end

end
• The State is A
• Final is just the identity function on State
• Consume takes X and State ⇒ X + State

fun {Consumer State InStream}

 case InStream

 of nil then {Final State}

 [] X | RestInStream then

 NextState = {Consume X State} in

 {Consumer NextState RestInStream}

 end

end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 41

Transducer Pattern 1

fun {Transducer State InStream}

 case InStream

 of nil then nil

 [] X | RestInStream then

 NextState#TX = {Transform X State}

 TX | {Transducer NextState RestInStream}

 end

end
• A transducer keeps its state in State, receives messages on

InStream and sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 42

Transducer Pattern 2

fun {Transducer State InStream}

 case InStream

 of nil then nil

 [] X | RestInStream then
 if {Test X#State} then

 NextState#TX = {Transform X State}

 TX | {Transducer NextState RestInStream}
else {Transducer State RestInStream} end

 end

end
• A transducer keeps its state in State, receives messages on InStream and

sends messages on OutStream

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 43

Example Transducer

fun {Filter Xs F}

 case Xs

 of nil then nil

 [] X|Xr then

 if {F X} then X|{Filter Xr F}

 else {Filter Xr F} end

 end

end

Generate Filter

IsOdd

6 5 4 3 2 1 5 3 1

Filter is a transducer that
takes an Instream and incremently
produces an Outstream that satisfies
the predicate F

local Xs Ys in
 thread Xs = {Generate 1 100} end
 thread Ys = {Filter Xs IsOdd} end
 thread {Browse Ys} end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 44

Larger example:
The sieve of Eratosthenes

• Produces prime numbers
• It takes a stream 2...N, peals off 2 from the rest of the stream
• Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys
Zs

X|Zs

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 45

Sieve
fun {Sieve Xs}

 case Xs

 of nil then nil

 [] X|Xr then Ys in

 thread Ys = {Filter Xr fun {$ Y} Y mod X \= 0 end} end

 X | {Sieve Ys}

 end

end
• The program forks a filter thread on each sieve call

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 46

Example call
local Xs Ys in
 thread Xs = {Generate 2 100000} end
 thread Ys = {Sieve Xs} end
 thread for Y in Ys do {Show Y} end end
end

Filter 3 SieveFilter 2 Filter 5

7 | 11 |...

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 47

Limitation of eager stream
processing Streams

• The producer might be much faster than the consumer
• This will produce a large intermediate stream that requires

potentially unbounded memory storage

x5 x4 x3 x2 x1
producer consumer

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 48

Solutions
There are three alternatives:

1. Play with the speed of the different threads, i.e. play with
the scheduler to make the producer slower

2. Create a bounded buffer, say of size N, so that the producer
waits automatically when the buffer is full

3. Use demand-driven approach, where the consumer activates
the producer when it needs a new element (lazy evaluation)

• The last two approaches introduce the notion of flow-
control between concurrent activities (very common)

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 49

Coroutines I
• Languages that do not support concurrent threads might

instead support a notion called coroutining
• A coroutine is a nonpreemptive thread (sequence of

instructions), there is no scheduler
• Switching between threads is the programmer’s

responsibility

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 50

Coroutines II, Comparison
{P ...} -- call

return

Procedures: one sequence of instructions, program transfers explicitly
when terminated it returns to the caller

procedure P

procedure Q

resume Q
coroutine P

coroutine Qspawn P

resume Q

resume P

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 51

Coroutines II, Comparison
{P ...} -- call

return

Coroutines: New sequences of instructions, programs explicitly
do all the scheduling, by spawn, suspend and resume

procedure P

procedure Q

resume Q
coroutine P

coroutine Qspawn P

resume Q

resume P

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 52

Time
• In concurrent computation one would like to handle time
• proc {Time.delay T} – The running thread

suspends for T milliseconds
• proc {Time.alarm T U} – Immediately creates its

own thread, and binds U to unit after T milliseconds

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 53

Example
local
 proc {Ping N}
 for I in 1..N do

 {Delay 500} {Browse ping}
 end
 {Browse 'ping terminate'}
 end
 proc {Pong N}
 for I in 1..N do

 {Delay 600} {Browse pong}
 end
 {Browse 'pong terminate'}
 end
in end

local
....
in
 {Browse 'game started'}
 thread {Ping 1000} end
 thread {Pong 1000} end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 54

Concurrent control abstraction
• We have seen how threads are forked by ’thread ... end’
• A natural question to ask is: how can we join threads?

fork

join

threads

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 55

Termination detection
• This is a special case of detecting termination of multiple threads, and

making another thread wait on that event.

• The general scheme is quite easy because of dataflow variables:

thread 〈S1〉 X1 = unit end
 thread 〈S2〉 X2 = X1 end
 ...
 thread 〈Sn〉 Xn = Xn-1 end
 {Wait Xn}
 % Continue main thread

• When all threads terminate the variables X1 … XN will be merged together
labeling a single box that contains the value unit.

• {Wait XN} suspends the main thread until XN is bound.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 56

Concurrent Composition
conc S1 [] S2 [] … [] Sn end

{Conc [proc{$} S1 end
 proc{$} S2 end

 ...
 proc{$} Sn end] }

• Takes a single argument that is a list of nullary procedures.

• When it is executed, the procedures are forked
concurrently. The next statement is executed only when all
procedures in the list terminate.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 57

Conc
local
 proc {Conc1 Ps I O}
 case Ps of P|Pr then
 M in
 thread {P} M = I end
 {Conc1 Pr M O}
 [] nil then O = I
 end
 end
in
 proc {Conc Ps}
 X in {Conc1 Ps unit X}
 {Wait X}

 end
end

This abstraction takes
a list of zero-argument
procedures and terminate
after all these threads have
terminated

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 58

Example
local
 proc {Ping N}
 for I in 1..N do

 {Delay 500} {Browse ping}
 end
 {Browse 'ping terminate'}
 end
 proc {Pong N}
 for I in 1..N do

 {Delay 600} {Browse pong}
 end
 {Browse 'pong terminate'}
 end
in end

local
....
in
 {Browse 'game started'}
 {Conc

[proc {$} {Ping 1000} end
 proc {$} {Pong 1000} end]}
 {Browse ’game terminated’}
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 59

Futures
• A future is a read-only capability of a single-assignment variable. For

example to create a future of the variable X we perform the operation !! to
create a future Y: Y = !!X

• A thread trying to use the value of a future, e.g. using Y, will suspend until the
variable of the future, e.g. X, gets bound.

• One way to execute a procedure lazily, i.e. in a demand-driven manner, is to
use the operation {ByNeed +P ?F}.

• ByNeed takes a zero-argument function P, and returns a future F. When a
thread tries to access the value of F, the function {P} is called, and its result
is bound to F.

• This allows us to perform demand-driven computations in a straightforward
manner.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 60

Example

• declare Y
{ByNeed fun {$} 1 end Y}
{Browse Y}

• we will observe that Y becomes a future, i.e. we will see Y<Future> in the
Browser.

• If we try to access the value of Y, it will get bound to 1.

• One way to access Y is by perform the operation {Wait Y} which triggers
the producing procedure.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 61

Thread Priority and Real Time
• Try to run the program using the following statement:

– {Sum 0 thread {Generate 0 100000000} end}

• Switch on the panel and observe the memory behavior of the program.

• You will quickly notice that this program does not behave well.

• The reason has to do with the asynchronous message passing. If the producer
sends messages i.e. create new elements in the stream, in a faster rate than the
consumer can consume, increasingly more buffering will be needed until the
system starts to break down.

• One possible solution is to control experimentally the rate of thread execution so
that the consumers get a larger time-slice than the producers do.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 62

Priorities
• There are three priority levels:

• high,

• medium, and

• low (the default)

• A priority level determines how often a runnable thread is allocated a time slice.

• In Oz, a high priority thread cannot starve a low priority one. Priority determines only
how large piece of the processor-cake a thread can get.

• Each thread has a unique name. To get the name of the current thread the procedure
Thread.this/1 is called.

• Having a reference to a thread, by using its name, enables operations on threads such as:

• terminating a thread, or

• raising an exception in a thread.
• Thread operations are defined the standard module Thread.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 63

Thread priority and thread
control

fun {Thread.state T} %% returns thread state
proc{Thread.injectException T E} %% exception E injected into thread
fun {Thread.this} %% returns 1st class reference to thread
proc{Thread.setPriority T P} %% P is high, medium or low
proc{Thread.setThisPriority P} %% as above on current thread

fun{Property.get priorities} %% get priority ratios
proc{Property.put priorities(high:H medium:M)}

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 64

Thread Priorities

• Oz has three priority levels. The system procedure

• {Property.put priorities p(medium:Y high:X)}
• Sets the processor-time ratio to X:1 between high-priority threads and medium-

priority thread.

• It also sets the processor-time ratio to Y:1 between medium-priority threads and
low-priority threads. X and Y are integers.

– Example:

• {Property.put priorities p(high:10 medium:10)}

• Now let us make our producer-consumer program work. We give the producer
low priority, and the consumer high. We also set the priority ratios to 10:1
and 10:1.

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 65

The program with priorities
local L in
 {Property.put priorities p(high:10 medium:10)}
 thread
 {Thread.setThisPriority low}
 L = {Generate 0 100000000}
 end
 thread
 {Thread.setThisPriority high}
 {Sum 0 L}
 end
end

C. Varela; Adapted with permission from S. Haridi and P. Van Roy 66

Exercises

85. SALSA asynchronous message passing enables to tag messages with
properties: priority, delay, and waitfor. Compare these mechanisms
with Oz thread priorities, time delays and alarms, and futures.

86. How do SALSA tokens relate to Oz dataflow variables and futures?
87. What is the difference between multiple thread termination detection

in Oz and join blocks in SALSA?
88. VRH Exercise 4.11.3 (page 339)

- Compare the sequential and concurrent execution performance of equivalent
SALSA programs.

89. VRH Exercise 4.11.5 (page 339)

