
C. Varela 1

Programming Languages
(CSCI 4430/6969)

History, Syntax, Semantics, Essentials, Paradigms

Carlos Varela
Rennselaer Polytechnic Institute

January 25, 2010

C. Varela 2

The first programmer ever

Ada Augusta, the Countess of Lovelace, the daughter of the poet Lord Byron

Circa 1843

Using Babbage’s Analytical Engine

C. Varela 3

The first “high-level” (compiled)
programming language

FORTRAN

1954

Backus at IBM

It was called “an automatic coding system”, not a “programming language”

Used for numerical computing

C. Varela 4

The first functional programming
language

Lisp

1958

McCarthy at Stanford

For LISts Processing---lists represent both code and data

Used for symbolic manipulation

C. Varela 5

The first object oriented
programming language

Simula

1962

Dahl and Nygaard at University of Oslo, Norway

Used for computer simulations

C. Varela 6

The first logic programming
language

Prolog

1972

Roussel and Colmerauer at Marseilles University, France

For “PROgrammation en LOGique”.

Used for natural language processing and automated theorem proving

C. Varela 7

The first concurrent
programming language

Concurrent Pascal

1974

Hansen at Caltech

Used for operating systems development

C. Varela 8

The first scripting language

REXX

1982

Cowlishaw at IBM

Only one data type: character strings

Used for “macro” programming and prototyping

C. Varela 9

The first multi-paradigm
programming language

Oz

1995

Smolka at Saarland University, Germany

A logic, functional, imperative, object-oriented, constraint,
concurrent, and distributed programming language

Used for teaching programming and prototyping

C. Varela 10

Other programming languages

Algol (Naur 1958)
Cobol (Hopper 1959)

BASIC (Kennedy and Kurtz 1964)
Pascal (Wirth 1970)

C (Kernighan and Ritchie 1971)
Ada (Whitaker 1979)

Smalltalk (Kay 1980)
C++ (Stroustrop 1980)

Eiffel (Meyer 1985)
Java (Gosling 1994)
C# (Hejlsberg 2000)

PLASMA (Hewitt 1975)
Act (Lieberman 1981)

ABCL (Yonezawa 1988)
Actalk (Briot 1989)

Erlang (Armstrong 1990)
E (Miller et al 1998)

SALSA (Varela and Agha 1999)

ML (Milner 1973)
Scheme (Sussman and Steele 1975)

Haskell (Hughes et al 1987)

Python (van Rossum 1985)
Perl (Wall 1987)

Tcl (Ousterhout 1988)
Lua (Ierusalimschy et al 1994)

JavaScript (Eich 1995)
PHP (Lerdorf 1995)

Ruby (Matsumoto 1995)

Imperative

Object-Oriented
Actor-Oriented

Functional

Scripting

C. Varela 11

Logic Programming (PLP 11)
Horn Clauses

Introduction to Prolog: Resolution, Unification

C. Varela 12

An Early (1971) “Conversation”
USER:

Cats kill mice.
Tom is a cat who does not like mice
who eat cheese.
Jerry is a mouse who eats cheese.
Max is not a mouse.
What does Tom do?

COMPUTER:
Tom does not like mice who eat
cheese.
Tom kills mice.

USER:
Who is a cat?

 COMPUTER:
Tom.

USER:
What does Jerry eat?

COMPUTER:
Cheese.

USER:
Who does not like mice who eat
cheese?

COMPUTER:
Tom.

USER:
What does Tom eat?

COMPUTER:
What cats who do not like mice
who eat cheese eat.

C. Varela 13

Another Conversation
USER:

Every psychiatrist is a person.
Every person he analyzes is sick.
Jacques is a psychiatrist in Marseille.
Is Jacques a person?
Where is Jacques?
Is Jacques sick?

COMPUTER:
Yes.
In Marseille.
I don’t know.

C. Varela 14

Logic programming

• A program is a collection of axioms, from which theorems
can be proven.

• A goal states the theorem to be proved.
• A logic programming language implementation attempts to

satisfy the goal given the axioms and built-in inference
mechanism.

C. Varela 15

Horn clauses

• A standard form for writing axioms, e.g.:

father(X,Y) ⇐ parent(X,Y), male(X).

• The Horn clause consists of:
– A head or consequent term H, and
– A body consisting of terms Bi

H ⇐ B0 , B1 , …, Bn

• The semantics is:

« If B0 , B1 , …, Bn, then H »

C. Varela 16

Terms

• Constants

rpi
troy

• Variables

University
City

• Predicates

located_at(rpi,troy)
pair(a, pair(b,c)) Can be nested.

C. Varela 17

Resolution

• To derive new statements, Robinson’s resolution principle says that if two
Horn clauses:

H1 ⇐ B11 , B12 , …, B1m
H2 ⇐ B21 , B22 , …, B2n

are such that H1 matches B2i, then we can replace B2i with B11 , B12 , …, B1m :

 H2 ⇐ B21 , B22 , …, B2(i-1), B11 , B12 , …, B1m , B2(i+1) …, B2n

• For example:
C ⇐ A,B
D ⇐ C
D ⇐ A,B

C. Varela 18

Resolution Example

father(X,Y) :- parent(X,Y), male(X).
ancestor(X,Y) :- father(X,Y).

ancestor(X,Y) :- parent(X,Y), male(X).

:- is Prolog’s notation (syntax) for ⇐.

C. Varela 19

Unification

• During resolution, free variables acquire values through unification
with expressions in matching terms.

• For example:

male(carlos).
parent(carlos, tatiana).
father(X,Y) :- parent(X,Y), male(X).

father(carlos, tatiana).

C. Varela 20

Unification Process

• A constant unifies only with itself.

• Two predicates unify if and only if they have
– the same functor,
– the same number of arguments, and
– the corresponding arguments unify.

• A variable unifies with anything.
– If the other thing has a value, then the variable is instantiated.
– If it is an uninstantiated variable, then the two variables are

associated.

C. Varela 21

Backtracking

• Forward chaining goes from axioms forward into goals.

• Backward chaining starts from goals and works backwards
to prove them with existing axioms.

C. Varela 22

Backtracking example

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

C. Varela 23

Backtracking example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

C. Varela 24

Backtracking example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails;
backtrack.

C. Varela 25

Backtracking example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails;
backtrack.

X = rochester

success

C. Varela 26

Exercises

1. Download SWI Prolog and install it in your laptop.
2. Execute the “snowy(City)” example. Use “tracing”

to follow backtracking step by step.
3. Create a knowledge base with Prolog facts about your

family members using predicates and constants. Create
Prolog rules using variables to define the following:
brother, sister, uncle, aunt, nephew,
niece, grandfather, grandmother,etc.
Query your program for family relationships.

