
Logic Programming (PLP 11.3)g g g ()
Prolog: Arithmetic, Equalities, Operators, I/O,

Natural Language Parsing

C l V lCarlos Varela
Rennselaer Polytechnic Institute

February 4, 2010

C. Varela 1

y ,

Arithmetic GoalsArithmetic Goals

N>M
N<M
N=<M
N>=M

• N and M must be bound to numbers for these tests to succeed or fail.

• X is 1+2 is used to assign numeric value of right-hand-side to
variable in left-hand-side.

C. Varela 2

Loop RevisitedLoop Revisited

natural(1).
natural(N) :- natural(M), N is M+1.

my_loop(N) :- N>0,
natural(I), I=<N,
write(I) nlwrite(I), nl,
I=N,
!.

Also called generate-and-test.

C. Varela 3

= is not equal to == or =:=q

X=Y X\=Y\
test whether X and Y can be or cannot be unified.

X==Y X\==Y
test whether X and Y are currently co-bound, i.e.,
have been bound to, or share the same value.

X=:=Y X=\=Y

test arithmetic equality and inequality.

C. Varela 4

More equalitiesMore equalities

X=@=Y X\=@=Y
test whether X and Y are structurally identical.

• =@= is weaker than == but stronger than =.@ g

• Examples:
a=@=A falsea @ A false
A=@=B true

x(A,A)=@=x(B,C) false
x(A A)=@=x(B B) truex(A,A)=@=x(B,B) true
x(A,B)=@=x(C,D) true

C. Varela 5

More on equalitiesMore on equalities
X==Y

 X=@=Y
 X=Y

but not the other way ().

• If two terms are currently co-bound, they are structurally identical, and
therefore they can unifytherefore they can unify.

• Examples:
a=@=A false
A=@=B true

x(A,A)=@=x(B,C) false
x(A,A)=@=x(B,B) true
x(A,B)=@=x(C,D) true

C. Varela 6

Prolog OperatorsProlog Operators
:- op(P,T,O)

declares an operator symbol O with precedence P and type T.

• Example:
:- op(500,xfx,’has_color’)
a has_color red.
b has_color blue.

then:
?- b has_color C.
C = blue.C blue.
?- What has_color red.
What = a.

C. Varela 7

Operator precedence/typeOperator precedence/type
• Precendence P is an integer: the larger the number, the

less the precedence (ability to group).
• Type T is one of:

T Position Associativity Examples
xfx Infix Non-associative is

f I fi Ri ht i tixfy Infix Right-associative , ;

yfx Infix Left-associative + - * /

fx Prefix Non-associative ?-

fy Prefix Right-associative
xf Postfix Non-associative
f P fi L f i i

C. Varela 8

yf Postfix Left-associative

Testing typesTesting types

atom(X)
tests whether X is an atom, e.g., ‘foo’, bar.

integer(X) g ()

tests whether X is an integer; it does not test for complex
terms, e.g., integer(4/2) fails.

float(X)
tests whether X is a float; it matches exact type.

string(X)
tests whether X is a string, enclosed in `` … ``.

C. Varela 9

Prolog InputProlog Input

seeing(X) g
succeeds if X is (or can be) bound to current read port.
X = user is keyboard (standard input.)

see(X) ()

opens port for input file bound to X, and makes it current.
seen

closes current port for input file, and makes user current. p p ,
read(X)

reads Prolog type expression from current port, storing value
in X.

end-of-file

is returned by read at <end-of-file>.

C. Varela 10

Prolog OutputProlog Output
telling(X)

succeeds if X is (or can be) bound to current output port.
X = user is screen (standard output.)

tell(X)
opens port for output file bound to X, and makes it current.

told
closes current output port, and reverses to screen output
(makes user current)(makes user current.)

write(X)
writes Prolog expression bound to X into current output port.

nl
new line (line feed).

tab(N)
writes N spaces to current output port.

C. Varela 11

I/O ExampleI/O Example
browse(File) :-
seeing(Old), /* save for later */
see(File), /* open this file */
repeat,

d() /* d f il */read(Data), /* read from File */
process(Data),
seen, /* close File */
see(Old) /* prev read source */see(Old), /* prev read source */
!. /* stop now */

process(end of file) :- !.process(end_of_file) : !.
process(Data) :- write(Data), nl, fail.

C. Varela 12

First-Class Terms RevisitedFirst Class Terms Revisited

call(P) Invoke predicate as a goalcall(P) Invoke predicate as a goal.

assert(P) Adds predicate to database.() Adds predicate to database.

retract(P) Removes predicate from database.p

functor(T,F,A)
Succeeds if T is a term with functor F
and arity Aand arity A.

clause(H,B)
Succeeds if the clause H :- B can be
found in the database

C. Varela 13

found in the database.

Natural Language Parsing g g g
(Example from "Learn Prolog Now!” Online Tutorial)

word(article,a).
word(article,every).
word(noun,criminal).
word(noun,'big kahuna burger').

d(b)word(verb,eats).
word(verb,likes).

sentence(Word1 Word2 Word3 Word4 Word5) :sentence(Word1,Word2,Word3,Word4,Word5) :-
word(article,Word1),
word(noun,Word2),
word(verb,Word3),word(verb,Word3),
word(article,Word4),
word(noun,Word5).

C. Varela 14

Parsing natural languageParsing natural language

• Definite Clause Grammars (DCG) are useful for natural language
parsing.

• Prolog can load DCG rules and convert them automatically to Prolog
parsing rules.

C. Varela 15

DCG SyntaxDCG Syntax
-->

DCG operator, e.g.,

sentence-->subject,verb,object.

Each goal is assumed to refer to the head of a DCG rule.

{prolog_code}
I l d P l d i dInclude Prolog code in generated parser, e.g.,

subject-->modifier,noun,{write(‘subject’)}.

[terminal_symbol]
Terminal symbols of the grammar, e.g.,

noun-->[cat]

C. Varela 16

noun >[cat].

Natural Language Parsing g g g
(example rewritten using DCG)

sentence --> article, noun, verb, article, noun.

article --> [a] | [every].

noun --> [criminal] | ['big kahuna burger'].

b [] | [lik]verb --> [eats] | [likes].

C. Varela 17

ExercisesExercises

12. How would you translate DCG rules into Prolog rules?
13. PLP Exercise 11.8 (pg 571).
14. PLP Exercise 11.14 (pg 572).

C. Varela 18

