Declarative Programming Techniques
Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

February 8, 2010
Accumulators

• *Accumulator programming* is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.

• Assume that the state S consists of a number of components to be transformed individually:

$$ S = (X,Y,Z,...) $$

• For each predicate P, each state component is made into a pair, the first component is the *input* state and the second component is the output state after P has terminated.

• S is represented as

$$ (X_{in}, X_{out}, Y_{in}, Y_{out}, Z_{in}, Z_{out},...) $$

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
A Trivial Example in Prolog

increment(N0,N) :-
 N is N0 + 1.

square(N0,N) :-
 N is N0 * N0.

inc_square(N0,N) :-
 increment(N0,N1),
 square(N1,N).

increment takes N0 as the input and produces N as the output by adding 1 to N0.

square takes N0 as the input and produces N as the output by multiplying N0 to itself.

inc_square takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of increment) and passing it as input to square. The pairs N0-N1 and N1-N are called accumulators.
A Trivial Example in Oz

```
proc {Increment N0 N}
    N = N0 + 1
end

proc {Square N0 N}
    N = N0 * N0
end

proc {IncSquare N0 N}
    N1 in
    {Increment N0 N1}
    {Square N1 N}
end
```

Increment takes N0 as the input and produces N as the output by adding 1 to N0.

Square takes N0 as the input and produces N as the output by multiplying N0 to itself.

IncSquare takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **Increment**) and passing it as input to **Square**. The pairs N0-N1 and N1-N are called *accumulators*.
Accumulators

• Assume that the state S consists of a number of components to be transformed individually:

$$S = (X, Y, Z)$$

• Assume P_1 to P_n are procedures in Oz

```oz
proc {P X_0 X Y_0 Y Z_0 Z}
  {P1 X_0 X_1 Y_0 Y_1 Z_0 Z_1}
  {P2 X_1 X_2 Y_1 Y_2 Z_1 Z_2}
  ...  
  {Pn X_{n-1} X Y_{n-1} Y Z_{n-1} Z}
end
```

• The procedural syntax is easier to use if there is more than one accumulator

The same concept applies to predicates in Prolog
MergeSort Example

• Consider a variant of MergeSort with accumulator
• proc {MergeSort1 N S0 S Xs}
 – N is an integer,
 – S0 is an input list to be sorted
 – S is the remainder of S0 after the first N elements are sorted
 – Xs is the sorted first N elements of S0
• The pair (S0, S) is an accumulator
• The definition is in a procedural syntax in Oz because it has two outputs S and Xs
Example (2)

fun \{\text{MergeSort}\ \text{Xs}\} \\
\{\text{MergeSort1}\ \{\text{Length}\ \text{Xs}\} \ \text{Xs} \ _ \ \text{Ys}\} \\
\text{Ys} \\
end

proc \{\text{MergeSort1}\ \text{N} \ \text{S0} \ \text{S} \ \text{Xs}\} \\
\text{if} \ \text{N==0} \ \text{then} \ \text{S} = \text{S0} \ \text{Xs} = \text{nil} \\
\text{elseif} \ \text{N ==1} \ \text{then} \ \text{X in X|S} = \text{S0} \ \text{Xs=[X]} \\
\text{else} \ \%\% \ \text{N} > 1 \\
\text{local} \ \text{S1} \ \text{Xs1} \ \text{Xs2} \ \text{NL} \ \text{NR} \ \text{in} \\
\text{NL} = \text{N} \ \text{div} \ 2 \\
\text{NR} = \text{N} - \text{NL} \\
\{\text{MergeSort1}\ \text{NL} \ \text{S0} \ \text{S1} \ \text{Xs1}\} \\
\{\text{MergeSort1}\ \text{NR} \ \text{S1} \ \text{S} \ \text{Xs2}\} \\
\text{Xs} = \{\text{Merge}\ \text{Xs1} \ \text{Xs2}\} \\
end \\
end \\
end
MergeSort Example in Prolog

mergesort(Xs, Ys) :-
 length(Xs, N),
 mergesort1(N, Xs, _, Ys).

mergesort1(0, S, S, []) :- !.
mergesort1(1, [X|S], S, [X]) :- !.
mergesort1(N, S0, S, Xs) :-
 NL is N // 2,
 NR is N - NL,
 mergesort1(NL, S0, S1, Xs1),
 mergesort1(NR, S1, S, Xs2),
 merge(Xs1, Xs2, Xs).
Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: (1+4)-3
- The machine executes the following instructions
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus
Multiple accumulators (2)

• Example: (1+4)-3
• The arithmetic expressions are represented as trees:
 \[
 \text{minus(plus(1 4) 3)}
 \]
• Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

\[
\text{proc \{ExprCode Expr Cin Cout Nin Nout\}}
\]

• Cin: initial list of instructions
• Cout: final list of instructions
• Nin: initial count
• Nout: final count
Multiple accumulators (3)

```
proc {ExprCode Expr C0 C N0 N}
  case Expr
    of plus(Expr1 Expr2) then C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
  [] minus(Expr1 Expr2) then C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
  [] I andthen {IsInt I} then
      C = push(I)|C0
      N = N0 + 1
    end
  end
end
```
Multiple accumulators (4)

proc {ExprCode Expr C0 C N0 N}

 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}

 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end
Shorter version (4)

\[
\begin{align*}
\text{proc } & \{\text{ExprCode Expr C0 C N0 N}\} \\
& \text{ case Expr} \\
& \text{ of plus(Expr1 Expr2) then} \\
& \quad \{\text{SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}\} \\
& \quad [] \text{ minus(Expr1 Expr2) then} \\
& \quad \{\text{SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}\} \\
& \quad [] \text{ I andthen } \{\text{IsInt I} \} \text{ then} \\
& \quad \quad \text{C = push(I)|C0} \\
& \quad \quad \text{N = N0 + 1} \\
& \quad \text{ end} \\
& \text{ end} \\
\end{align*}
\]

\[
\begin{align*}
\text{proc } & \{\text{SeqCode Es C0 C N0 N}\} \\
& \text{ case Es} \\
& \text{ of nil then } C = C0 N = N0 \\
& \quad [] \text{ E|Er then } N1 C1 \text{ in} \\
& \quad \quad \{\text{ExprCode E C0 C1 N0 N1}\} \\
& \quad \quad \{\text{SeqCode Er C1 C N1 N}\} \\
& \quad \quad \text{ end} \\
& \text{ end} \\
\end{align*}
\]
Functional style (4)

fun {ExprCode Expr t(C0 N0) }
case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
 [] I andthen {IsInt I} then
 t(push(I)|C0 N0 + 1)
 end
end
end

fun {SeqCode Es T}
case Es
 of nil then T
 [] E|Er then
 T1 = {ExprCode E T} in
 {SeqCode Er T1}
 end
end
Difference lists in Oz

- A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list.

 - $X \# X$ \hspace{1cm} % Represent the empty list
 - nil \# nil \hspace{1cm} % idem
 - [a] \# [a] \hspace{1cm} % idem
 - (a|b|c|X) \# X \hspace{1cm} % Represents [a b c]
 - [a b c d] \# [d] \hspace{1cm} % idem
Difference lists in Prolog

• A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list

• X, X % Represent the empty list
• $[], []$ % idem
• $[a], [a]$ % idem
• $[a,b,c|X], X$ % Represents $[a,b,c]$
• $[a,b,c,d], [d]$ % idem
Difference lists in Oz (2)

• When the second list is unbound, an append operation with another difference list takes constant time

```oz
fun {AppendD D1 D2}
    S1 # E1 = D1
    S2 # E2 = D2
in
    E1 = S2
    S1 # E2
end
```

• `local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end`

• Displays `(1|2|3|4|5|Y)#Y`
Difference lists in Prolog (2)

- When the second list is unbound, an append operation with another difference list takes constant time

\[
\text{append_dl}(S1,E1, S2,E2, S1,E2) \ :\ E1 = S2.
\]

- \?
\text{- append_dl}([1,2,3|X], X, [4,5|Y], Y, S,E).

Displays
\[
\begin{align*}
X & = [4, 5|_G193] \\
Y & = _G193 \\
S & = [1, 2, 3, 4, 5|_G193] \\
E & = _G193 ;
\end{align*}
\]
A FIFO queue with difference lists (1)

- A **FIFO queue** is a sequence of elements with an insert and a delete operation.
 - Insert adds an element to one end and delete removes it from the other end
- Queues can be implemented with lists. If L represents the queue content, then inserting X gives $X|L$ and deleting X gives $\{\text{ButLast} \ L \ X\}$ (all elements but the last).
 - Delete is inefficient: it takes time proportional to the number of queue elements
- With difference lists we can implement a queue with constant-time insert and delete operations
 - The queue content is represented as $q(N \ S \ E)$, where N is the number of elements and $S#E$ is a difference list representing the elements
A FIFO queue
with difference lists (2)

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end end

fun {Delete Q X}
 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end end

fun {EmptyQueue} case Q of q(N S E) then N==0 end end

• Inserting ‘b’:
 – In: q(1 a|T T)
 – Out: q(2 a|b|U U)

• Deleting X:
 – In: q(2 a|b|U U)
 – Out: q(1 b|U U)
 and X=a

• Difference list allows operations at both ends

• N is needed to keep track of the number of queue elements
Flatten (revisited)

fun {Flatten Xs}
case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.:

{Flatten [1 [2] [[3]]]} = [1 2 3]

Let us replace lists by difference lists and see what happens.
Flatten with difference lists (1)

- Flatten of nil is $X\#X$
- Flatten of $X|Xr$ is $Y_1\#Y$ where
 - flatten of X is $Y_1\#Y_2$
 - flatten of Xr is $Y_3\#Y$
 - equate Y_2 and Y_3
- Flatten of a leaf X is $(X|Y)\#Y$

Here is what it looks like as text
Flatten with difference lists (2)

Here is the new program. It is much more efficient than the first version.

```plaintext
proc {FlattenD Xs Ds}
case Xs
    of nil then Y in Ds = Y#Y
[] X|Xr then Y0 Y1 Y2 in
    Ds = Y0#Y2
    {FlattenD X Y0#Y1}
    {FlattenD Xr Y1#Y2}
[] X andthen {IsLeaf X} then Y in (X|Y)#Y
end
end
fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end
```
Reverse (revisited)

• Here is our recursive reverse:

```plaintext
fun {Reverse Xs}
  case Xs
  of nil then nil
  [X|Xr then {Append {Reverse Xr} [X]}
  end
end
```

• Rewrite this with difference lists:
 – Reverse of nil is X#X
 – Reverse of X|Xs is Y1#Y, where
 • reverse of Xs is Y1#Y2, and
 • equate Y2 and X|Y
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length
- Using difference lists in the naive version makes it linear time
- We use two arguments Y_1 and Y instead of $Y_1\#Y$
- With a minor change we can make it iterative as well

```plaintext
fun \{ReverseD Xs\}
  proc \{ReverseD Xs Y1 Y\}
    case Xs
      of nil then Y1=Y
      [] X|Xr then Y2 in
        \{ReverseD Xr Y1 Y2\}
        Y2 = X|Y
    end
  end
R in
\{ReverseD Xs R nil\}
R
end
```
Reverse with difference lists (2)

fun {ReverseD Xs}
 proc {ReverseD Xs Y1 Y}
 case Xs
 of nil then Y1=Y
 [] X|Xr then
 {ReverseD Xr Y1 X|Y}
 end
 end
R in
 {ReverseD Xs R nil}
R
end
Difference lists: Summary

• Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time
 – A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
 – The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out
• Difference lists are declarative, yet have some of the power of destructive assignment
 – Because of the single-assignment property of dataflow variables
• Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.
Exercises

15. Draw the search trees for Prolog queries:
 • append([1, 2], [3], L).
 • append(X, Y, [1, 2, 3]).
 • append_dl([1, 2|X], X, [3|Y], Y, S, E).

16. Rewrite the multiple accumulators example in Prolog.

17. VRH Exercise 3.10.11 (page 232)

18. VRH Exercise 3.10.14 (page 232)

19. VRH Exercise 3.10.15 (page 232)