Declarative Computation Model
Defining practical programming languages (VRH2.1)

Carlos Varela
RPI
March 1, 2010

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Programming

• A computation model: describes a language and how the sentences (expressions, statements) of the language are executed by an abstract machine
• A set of programming techniques: to express solutions to the problems you want to solve
• A set of reasoning techniques: to reason about programs to increase the confidence that they behave correctly and to calculate their efficiency
Declarative Programming Model

• Guarantees that the computations are evaluating functions on (partial) data structures
• The core of functional programming (LISP, Scheme, ML, Haskell)
• The core of logic programming (Prolog, Mercury)
• Stateless programming vs. stateful (imperative) programming
• We will see how declarative programming underlies concurrent and object-oriented programming (Erlang, C++, Java, SALSA)
Defining a programming language

- Syntax (grammar)
- Semantics (meaning)
Language syntax

- Defines what are the legal programs, i.e. programs that can be executed by a machine (interpreter)
- Syntax is defined by grammar rules
- A grammar defines how to make ‘sentences’ out of ‘words’
- For programming languages: sentences are called statements (commands, expressions)
- For programming languages: words are called tokens
- Grammar rules are used to describe both tokens and statements
A *statement* is a sequence of tokens

A *token* is a sequence of characters

A program that recognizes a sequence of characters and produces a sequence of tokens is called a *lexical analyzer*

A program that recognizes a sequence of tokens and produces a statement representation is called a *parser*

Normally statements are represented as (parse) *trees*
Extended Backus-Naur Form

- EBNF (Extended Backus-Naur Form) is a common notation to define grammars for programming languages
- Terminal symbols and non-terminal symbols
 - *Terminal symbol* is a token
 - *Nonterminal symbol* is a sequence of tokens, and is represented by a grammar rule

\[\langle \text{nonterminal} \rangle ::= \langle \text{rule body} \rangle \]
Grammar rules

• 〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
• 〈digit〉 is defined to represent one of the ten tokens 0, 1, …, 9
• The symbol ‘|’ is read as ‘or’
• Another reading is that 〈digit〉 describes the set of tokens {0,1,…, 9}
• Grammar rules may refer to other nonterminals
• 〈integer〉 ::= 〈digit〉 {〈digit〉}
• 〈integer〉 is defined as the sequence of a 〈digit〉 followed by zero or more 〈digit〉’s
How to read grammar rules

• \(\langle x \rangle\) : is a nonterminal \(x\)
• \(\langle x \rangle ::= Body\) : \(\langle x \rangle\) is defined by \(Body\)
• \(\langle x \rangle | \langle y \rangle\) : either \(\langle x \rangle\) or \(\langle y \rangle\) (choice)
• \(\langle x \rangle \langle y \rangle\) : the sequence \(\langle x \rangle\) followed by \(\langle y \rangle\)
• \(\{ \langle x \rangle \}\) : a sequence of zero or more occurrences of \(\langle x \rangle\)
• \(\{ \langle x \rangle \}\)^+: a sequence of one or more occurrences of \(\langle x \rangle\)
• \([\langle x \rangle \]\) : zero or one occurrences of \(\langle x \rangle\)
• Read the grammar rule from left to right to give the following sequence:
 – Each terminal symbol is added to the sequence
 – Each nonterminal is replaced by its definition
 – For each \(\langle x \rangle | \langle y \rangle\) pick any of the alternatives
 – For each \(\langle x \rangle \langle y \rangle\) add the sequence \(\langle x \rangle\) followed by the sequence \(\langle y \rangle\)
Context-free and context-sensitive grammars

• Grammar rules can be used either
 – to verify that a statement is legal, or
 – to generate all possible statements
• The set of all possible statements generated from a grammar and one nonterminal symbol is called a (formal) language
• EBNF notation defines a class of grammars called context-free grammars
• Expansion of a nonterminal is always the same regardless of where it is used
• For practical languages, a context-free grammar is not enough, usually a condition on the context is sometimes added
Context-free and context-sensitive grammars

- It is easy to read and understand
- Defines a superset of the language
- Expresses restrictions imposed by the language (e.g. variable must be declared before use)
- Makes the grammar rules context sensitive

Context-free grammar (e.g. with EBNF)

Set of extra conditions
Examples

- \(\langle \text{statement} \rangle ::= \text{skip} | \langle \text{expression} \rangle \neq \langle \text{expression} \rangle | \ldots \)
- \(\langle \text{expression} \rangle ::= \langle \text{variable} \rangle | \langle \text{integer} \rangle | \ldots \)

- \(\langle \text{statement} \rangle ::= \text{if} \ \langle \text{expression} \rangle \ \text{then} \ \langle \text{statement} \rangle \)
 \{ \text{elseif} \ \langle \text{expression} \rangle \ \text{then} \ \langle \text{statement} \rangle \} \)
 [\text{else} \ \langle \text{statement} \rangle] \ \text{end} | \ldots \)
Example: (Parse Trees)

- if \langle expression \rangle \text{ then } \langle statement \rangle_1 \text{ else } \langle statement \rangle_2 \text{ end}
Language Semantics

• Semantics defines what a program does when it executes
• Semantics should be simple and yet allows reasoning about programs (correctness, execution time, and memory use)
• How can this be achieved for a practical language that is used to build complex systems (millions of lines of code)?
• The *kernel language* approach
Kernel Language Approach

• Define a very simple language (kernel language)
• Define the computation model of the kernel language
• By defining how the constructs (statements) of the language manipulate (create and transform) the data structures (the entities) of the language
• Define a mapping scheme (translation) of the full programming language into the kernel language
• Two kinds of translations: linguistic abstractions and syntactic sugar
Kernel Language Approach

- Provides useful abstractions for the programmer
- Can be extended with linguistic abstractions
- Is easy to understand and reason with
- Has a precise (formal) semantics

Practical language

Translation

Kernel language

fun \{Sqr X\} X*X end
B = \{Sqr \{Sqr A\}\}

proc \{Sqr X Y\}
{ * X X Y}
end
local T in
{Sqr A T}
{Sqr T B}
end
Linguistic abstractions vs. syntactic sugar

- Linguistic abstractions, provide higher level concepts that the programmer can use to model and reason about programs (systems)
- Examples: functions (fun), iterations (for), classes and objects (class), mailboxes (receive)
- The functions (calls) are translated to procedures (calls)
- The translation answers questions about the function call:

\{F1 \{F2 X\} \{F3 X\}\}
Linguistic abstractions vs. syntactic sugar

• Linguistic abstractions, provide higher level concepts that the programmer can use to model and reason about programs (systems)
• Syntactic sugar are short cuts and conveniences to improve readability

```
if N==1 then [1]
else
  local L in
  ...
end
end
```

```
if N==1 then [1]
else L in
  ...
end
```
Approaches to semantics

Programming Language

- Operational model
 - Aid the programmer in reasoning and understanding

Kernel Language
 - Mathematical study of programming (languages)
 - \(\lambda \)-calculus, predicate calculus, \(\pi \)-calculus

Formal calculus
 - Aid to the implementer
 - Efficient execution on a real machine

Abstract machine
Exercises

35. Write a valid EBNF grammar for lists of non-negative integers in Oz.

36. Write a valid EBNF grammar for the λ-calculus.
 - Which are terminal and which are non-terminal symbols?
 - Draw the parse tree for the expression:
 $$((\lambda x.x \ \lambda y.y) \ \lambda z.z)$$

37. The grammar

 $$\langle \text{exp} \rangle ::= \langle \text{int} \rangle \mid \langle \text{exp} \rangle \ \langle \text{op} \rangle \ \langle \text{exp} \rangle$$
 $$\langle \text{op} \rangle ::= + \mid *$$

 is ambiguous (e.g., it can produce two parse trees for the expression $2*3+4$). Rewrite the grammar so that it accepts the same language unambiguously.