
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
 Memory management (VRH 2.5)

Carlos Varela
RPI

April 1, 2010

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Memory Management

• Semantic stack and store sizes during computation
– analysis using operational semantics
– recursion used for looping

• efficient because of last call optimization
– memory life cycle
– garbage collection

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Last call optimization
• Consider the following procedure

proc {Loop10 I}
if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

• This procedure does not increase the size of the STACK
• It behaves like a looping construct

Recursive call
is the last call

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Last call optimization

proc {Loop10 I}
if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [({Loop10 0}, E0)]

ST: [({Browse I}, {I→i0,...})
 ({Loop10 I+1}, {I→i0,...})]
σ : {i0=0, ...}

ST: [({Loop10 I+1}, {I→i0,...})]
σ : {i0=0, ...}

ST: [({Browse I}, {I→i1,...})
 ({Loop10 I+1}, {I→i1,...})]
σ : {i0=0, i1=1,...}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Stack and Store Size
proc {Loop10 I}

if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [({Browse I}, {I→ik,...})
 ({Loop10 I+1}, {I→ik,...})]
σ : {i0=0, i1=1,..., ik-1=k-1, ik=k,... }

The semantic stack size is bounded by a constant.
But the store size keeps increasing with the computation.

Notice that at (k+1)th recursive call, we only need ik
If we can keep the store size constant, we can run indefinitely
with a constant memory size.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Garbage collection
proc {Loop10 I}

if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [({Browse I}, {I→ik,...})
 ({Loop10 I+1}, {I→ik,...})]
σ : {i0=0, i1=1,..., ik-i=k-1, ik=k,... }

Garbage collection is an algorithm (a task) that removes from
memory (store) all cells that are not accessible from the stack

ST: [({Browse I}, {I→ik,...})
 ({Loop10 I+1}, {I→ik,...})]
σ : { ik=k, ... }

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

The memory life cycle

• Active memory is what the
program needs to continue
execution (semantic stack +
reachable part of store)

• Memory that is no longer
needed is of two kinds:

– Can be immediately
deallocated (i.e., semantic
stack)

– Simply becomes inactive (i.e.,
store)

• Reclaiming inactive memory is
the hardest part of memory
management

– Garbage collection is
automatic reclaiming

Active Free

Inactive

Allocate/
deallocate

Become inactive
(program execution)

Reclaim
(garbage collection)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Garbage Collection
• Lower-level languages (C, C++) do not have automatic garbage

collection.
• Manual memory management can be more efficient but it is also more

error-prone, e.g.:
– Dangling references

• Reclaiming reachable memory blocks
– Memory leaks

• Not reclaiming unreachable memory blocks

• Higher-level languages (Erlang, Java, Lisp, Smalltalk) typically have
automatic garbage collection.

• Modern algorithms are efficient enough---minimal memory and time
penalties.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Garbage Collection Algorithms

• Reference Counting algorithms
– Keep track of number of references to memory blocks
– When count is 0, memory block is reclaimed.
– Cannot collect cycles of garbage.

• Mark-and-Sweep algorithms
– Phase 1: Determine active memory

• Following pointers (in Oz, referenced store variables) from a root set
(in Oz, the semantic stack).

– Phase 2: Compact memory in one contiguous region.
• Everything outside this region is free.

– Generally must briefly pause the application memory mutation while
collecting.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Avoiding memory leaks
• Consider the following function

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end
local L in

 L= [1 2 3 … 1000000]
 {Sum 0 L L}
 end
• Since it keeps a pointer to the original list L, L will stay in

memory during the whole execution of Sum.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Avoiding memory leaks
• Consider the following function

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end
local L in

L= [1 2 3 … 1000000]
{Sum 0 L}

end
• Here, the reference to L is lost immediately and its space

can be collected as the function executes.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Managing external references
• External resources are data structures outside the current O.S. process.

• There can be pointers from internal data structures to external
resources, e.g.
– An open file in a file system
– A graphic entity in a graphics display
– If the internal data structure is reclaimed, then the external resource needs

to be cleaned up (e.g., remove graphical entity, close file)

• There can be pointers from external resources to internal data
structures, e.g.
– A database server
– A web service
– If the internal data structure is reachable from the outside, it should not be

reclaimed.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Local Mozart Garbage Collector
• Copying dual-space algorithm
• Advantage : Execution time is proportional to the active

memory size, not total memory size.
• Disadvantage : Half of the total memory is unusable at any

given time

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Exercises
55. What do you expect to happen if you try to execute the following statement?

Try to answer without actually executing it!
local T = tree(key:A left:B right:C value:D) in
 A = 1
 B = 2
 C = 3
 D = 4
end

56. VRH Exercise 2.9.9 (page 109).
57. Any realistic computer system has a memory cache for fast access to

frequently used data. Can you think of any issues with garbage
collection in a system that has a memory cache?

