
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
 Memory management (VRH 2.5)

Carlos Varela
RPI

April 1, 2010

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Memory Management

• Semantic stack and store sizes during computation
– analysis using operational semantics
– recursion used for looping

• efficient because of last call optimization
– memory life cycle
– garbage collection
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Last call optimization
• Consider the following procedure

proc {Loop10 I}
if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

• This procedure does not increase the size of the STACK
• It behaves like a looping construct

Recursive call
is the last call
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Last call optimization

proc {Loop10 I}
if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [ ({Loop10 0}, E0) ]

ST: [({Browse I}, {I→i0,...})
        ({Loop10 I+1}, {I→i0,...}) ]
σ : {i0=0, ...}

ST: [({Loop10 I+1}, {I→i0,...}) ]
σ : {i0=0, ...}

ST: [({Browse I}, {I→i1,...})
        ({Loop10 I+1}, {I→i1,...}) ]
σ : {i0=0, i1=1,...}
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Stack and Store Size
proc {Loop10 I}

if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [({Browse I}, {I→ik,...})
        ({Loop10 I+1}, {I→ik,...}) ]
σ : {i0=0, i1=1,..., ik-1=k-1, ik=k,... }

The semantic stack size is bounded by a constant.  
But the store size keeps increasing with the computation.

Notice that at (k+1)th recursive call, we only need ik
If we can keep the store size constant, we can run indefinitely
with a constant memory size. 
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Garbage collection
proc {Loop10 I}

if I ==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

ST: [({Browse I}, {I→ik,...})
        ({Loop10 I+1}, {I→ik,...}) ]
σ : {i0=0, i1=1,..., ik-i=k-1, ik=k,... }

Garbage collection is an algorithm (a task) that removes from
memory (store) all cells that are not accessible from the stack

ST: [({Browse I}, {I→ik,...})
        ({Loop10 I+1}, {I→ik,...}) ]
σ : { ik=k, ... }
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The memory life cycle

• Active memory is what the
program needs to continue
execution (semantic stack +
reachable part of store)

• Memory that is no longer
needed is of two kinds:

– Can be immediately
deallocated (i.e., semantic
stack)

– Simply becomes inactive (i.e.,
store)

• Reclaiming inactive memory is
the hardest part of memory
management

– Garbage collection is
automatic reclaiming

Active Free

Inactive

Allocate/
deallocate

Become inactive
(program execution)

Reclaim
(garbage collection)
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Garbage Collection
• Lower-level languages (C, C++) do not have automatic garbage

collection.
• Manual memory management can be more efficient but it is also more

error-prone, e.g.:
– Dangling references

• Reclaiming reachable memory blocks
– Memory leaks

• Not reclaiming unreachable memory blocks

• Higher-level languages (Erlang, Java, Lisp, Smalltalk) typically have
automatic garbage collection.

• Modern algorithms are efficient enough---minimal memory and time
penalties.
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Garbage Collection Algorithms

• Reference Counting algorithms
– Keep track of number of references to memory blocks
– When count is 0, memory block is reclaimed.
– Cannot collect cycles of garbage.

• Mark-and-Sweep algorithms
– Phase 1:  Determine active memory

• Following pointers (in Oz, referenced store variables) from a root set
(in Oz, the semantic stack).

– Phase 2:  Compact memory in one contiguous region.
• Everything outside this region is free.

– Generally must briefly pause the application memory mutation while
collecting.
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Avoiding memory leaks
• Consider the following function

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end
local L in

      L= [1 2 3 … 1000000]
   {Sum 0 L L}
     end
• Since it keeps a pointer to the original list L, L will stay in

memory during the whole execution of Sum.
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Avoiding memory leaks
• Consider the following function

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end
local L in

L= [1 2 3 … 1000000]
{Sum 0 L}

end
• Here, the reference to L is lost immediately and its space

can be collected as the function executes.
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Managing external references
• External resources are data structures outside the current O.S. process.

• There can be pointers from internal data structures to external
resources, e.g.
– An open file in a file system
– A graphic entity in a graphics display
– If the internal data structure is reclaimed, then the external resource needs

to be cleaned up (e.g., remove graphical entity, close file)

• There can be pointers from external resources to internal data
structures, e.g.
– A database server
– A web service
– If the internal data structure is reachable from the outside, it should not be

reclaimed.
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Local Mozart Garbage Collector
• Copying dual-space algorithm
• Advantage : Execution time is proportional to the active

memory size, not total memory size.
• Disadvantage : Half of the total memory is unusable at any

given time
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Exercises
55. What do you expect to happen if you try to execute the following statement?

Try to answer without actually executing it!
local T = tree(key:A left:B right:C value:D) in
   A = 1
   B = 2
   C = 3
   D = 4
end

56. VRH Exercise 2.9.9 (page 109).
57. Any realistic computer system has a memory cache for fast access to

frequently used data. Can you think of any issues with garbage
collection in a system that has a memory cache?


