
C. Varela; Adapted from S. Haridi and P. Van Roy 1

Declarative Concurrency
 Lazy Execution (VRH 4.5)

Carlos Varela
Rensselaer Polytechnic Institute

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

May 3, 2010



C. Varela; Adapted from S. Haridi and P. Van Roy 2

Lazy evaluation
• The default functions in Oz are evaluated eagerly (as soon

as they are called)
• Another way is lazy evaluation where a computation is

done only when the result is needed

declare
fun lazy {Ints N}
   N|{Ints N+1}
end

• Calculates the infinite list:
0 | 1 | 2 | 3 | ...
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Lazy evaluation (2)
• Write a function that computes as

many rows of Pascal’s triangle as
needed

• We do not know how many
beforehand

• A function is lazy if it is evaluated
only when its result is needed

• The function PascalList is evaluated
when needed

fun lazy {PascalList Row}

   Row | {PascalList

                {AddList

    Row

    {ShiftRight Row}}}

end
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Lazy evaluation (3)
• Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

• The function continues where it
left off

declare

L = {PascalList [1]}

{Browse L}

{Browse L.1}

{Browse L.2.1}

L<Future>

[1]

[1 1]
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Lazy execution
• Without lazyness, the execution order of each thread

follows textual order, i.e., when a statement comes as the
first in a sequence it will execute, whether or not its results
are needed later

• This execution scheme is called eager execution, or
supply-driven execution

• Another execution order is that a statement is executed
only if its results are needed somewhere in the program

• This scheme is called lazy evaluation, or demand-driven
evaluation (some languages use lazy evaluation by default,
e.g., Haskell)
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Example
B = {F1 X}
C = {F2 Y}
D = {F3 Z}
A = B+C

• Assume F1, F2 and F3 are lazy functions
• B = {F1 X} and C = {F2 Y} are executed only if and when

their results are needed in A = B+C
• D = {F3 Z} is not executed since it is not needed
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Example

• In lazy execution, an
operation suspends until its
result is needed

• The suspended operation is
triggered when another
operation needs the value
for its arguments

• In general multiple
suspended operations could
start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Demand
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Example II

• In data-driven execution,
an operation suspends until
the values of its arguments
results are available

• In general the suspended
computation could start
concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Data driven
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Using Lazy Streams
fun {Sum Xs A Limit}

   if Limit>0 then

         case Xs of X|Xr then

    {Sum Xr A+X Limit-1}

         end

   else A end

end

local Xs S in

   Xs={Ints 0}

   S={Sum Xs 0 1500}

   {Browse S}

end
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How does it work?
 fun {Sum Xs A Limit}

   if Limit>0 then

         case Xs of X|Xr then

    {Sum Xr A+X Limit-1}

         end

   else A end

end

fun lazy {Ints N}

   N | {Ints N+1}

end

local Xs S in

   Xs = {Ints 0}

   S={Sum Xs 0 1500}

   {Browse S}

end



C. Varela; Adapted from S. Haridi and P. Van Roy 11

Improving throughput
• Use a lazy buffer
• It takes  a lazy input stream In and an integer N, and

returns a lazy output stream Out
• When it is first called, it first fills itself with N elements by

asking the producer
• The buffer now has N elements filled
• Whenever the consumer asks for an element, the buffer in

turn asks the producer for another element
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The buffer example

producer buffer consumer

N

producer buffer consumer

N
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The buffer
fun {Buffer1 In N}
    End={List.drop In N}

    fun lazy {Loop In End}
         In.1|{Loop In.2 End.2}
    end
in
   {Loop In End}
end

Traversing the In stream,
forces the producer to emit
N elements
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The buffer II
fun {Buffer2 In N}
    End = thread

            {List.drop In N}
          end

    fun lazy {Loop In End}
         In.1|{Loop In.2 End.2}
    end
in
   {Loop In End}
end

Traversing the In stream,
forces the producer to emit
N elements and at the same
time serves the consumer
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The buffer III
fun {Buffer3 In N}
    End = thread

            {List.drop In N}
          end

    fun lazy {Loop In End}
    E2 = thread End.2 end

         In.1|{Loop In.2 E2}
    end
in
   {Loop In End}
end

Traverse the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer, and requests the next
element ahead
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Larger Example:
The Sieve of Eratosthenes

• Produces prime numbers
• It takes a stream 2...N, peals off 2 from the rest of the stream
• Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys
Zs

X|Zs
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Lazy Sieve
fun lazy {Sieve Xs}
   X|Xr = Xs in
   X | {Sieve {LFilter

       Xr
       fun {$ Y} Y mod X \= 0 end
      }}

end

fun {Primes} {Sieve {Ints 2}} end
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Lazy Filter
For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
   case Xs
   of nil then nil
   [] X|Xr then
      if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
   end
end
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Define streams implicitly

• Ones = 1 | Ones
• Infinite stream of

ones

1

cons

Ones
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Define streams implicitly

• Xs = 1 | {LMap Xs
              fun {$ X}  X+1 end}

• What is Xs ?

1

cons

+1

Xs?
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The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5
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The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge
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The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

1

cons

H
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Lazy File Reading
fun {ToList FO}

fun lazy {LRead} L T in
if {File.readBlock FO L T} then
    T = {LRead}
else T = nil {File.close FO} end
L

end
{LRead}

end
• This avoids reading the whole file in memory
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List Comprehensions
• Abstraction provided in lazy functional languages that

allows writing higher level set-like expressions
• In our context we produce lazy lists instead of sets
• The mathematical set expression

– {x*y | 1≤x ≤10, 1≤y ≤x}
• Equivalent List comprehension expression is

– [X*Y | X = 1..10 ; Y = 1..X]
• Example:

– [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]
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List Comprehensions
• The general form is
• [ f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)

  y ← gen(x, a1,...,an) ; guard(y,x,...)
....

]
• No linguistic support in Mozart/Oz, but can be easily

expressed
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Example 1
• z = [x#x | x ← from(1,10)]
• Z = {LMap {LFrom 1 10} fun{$ X} X#X end}

• z = [x#y | x ← from(1,10), y ← from(1,x)]
• Z = {LFlatten

     {LMap {LFrom 1 10}
              fun{$ X} {LMap {LFrom 1 X}
                                 fun {$ Y} X#Y end
                               }

       end 
      }
 }
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Example 2
• z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10]
• Z ={LFilter

{LFlatten
     {LMap {LFrom 1 10}

              fun{$ X} {LMap {LFrom 1 X}
                                 fun {$ Y} X#Y end
                               }

       end 
      }
 }

       fun {$ X#Y} X+Y=<10 end} }
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Implementation of lazy execution

〈s〉::= skip                                           empty statement
     |  ...

| thread 〈s1〉 end thread creation
| {ByNeed fun{$} 〈e〉 end  〈x〉} by need statement

The following defines the syntax of a statement, 〈s〉 denotes a statement 

zero arity
function

variable
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Implementation

some statement

f
x

{ByNeed fun{$} 〈e〉 end  X,E }
stack

store

A function value is created in the
store (say f)
the function f is associated with
the variable x
execution proceeds immediately
to next statement

f
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Implementation

some statement

f
x : f

{ByNeed fun{$} 〈e〉 end  X,E }
stack

store

A function value is created in the
store (say f)
the function f is associated with
the variable x
execution proceeds immediately
to next statement

f

(fun{$} 〈e〉 end  X,E)
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Accessing the ByNeed variable
• X = {ByNeed fun{$} 111*111 end} (by thread T0)

• Access by some thread T1
– if X > 1000 then {Browse hello#X} end

or

– {Wait X}
– Causes X to be bound to 12321 (i.e. 111*111)
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Implementation

Thread T1
1. X is needed
2. start a thread T2 to execute F (the function)
3. only T2 is allowed to bind X

Thread T2

1. Evaluate Y = {F}
2. Bind X the value Y
3. Terminate T2

4. Allow access on X
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Lazy functions
fun lazy {Ints N}

N | {Ints N+1}
end

fun {Ints N}
fun {F} N | {Ints N+1} end

in {ByNeed F}
end
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Exercises

90. Write a lazy append list operation LazyAppend.  Can
you also write LazyFoldL?  Why or why not?

91. Exercise VRH 4.11.10 (pg 341)
92. Exercise VRH 4.11.13 (pg 342)
93. Exercise VRH 4.11.17 (pg 342)


