Logic Programming (PLP 11)

Prolog Imperative Control Flow:
Backtracking, Cut, Fail, Not

Carlos Varela

Rennselaer Polytechnic Institute

January 31, 2011

C. Varela

Backtracking

o Forward chaining goes from axioms forward into goals.

* Backward chaining starts from goals and works backwards
to prove them with existing axioms.

C. Varela 2

Backtracking example

rainy (seattle).

rainy (rochester).

cold (rochester) .

snowy (X) :- rainy(X), cold(X).

snowy (C)

C= X success

snowy (X)

cold (seattle)
AND fails;
//’1::::::::///}q backtrack.

/ rainy (X) cold (X

X = seattle % hest
= rochester

al eattle) rainy (rochester)

C. Varela 3

Imperative Control Flow

* Programmer has explicit control on backtracking process.

Cut (!)

« As a goal 1t succeeds, but with a side effect:

— Commits interpreter to choices made since unifying parent goal
with left-hand side of current rule.

C. Varela

Cut (!) Example

rainy (seattle).

rainy (rochester) .

cold (rochester).

snowy (X) :—- rainy(X), !, cold(X).

C. Varela

Cut (!) Example

rainy (seattle).
rainy (rochester) .
cold (rochester) .

snowy (X) :- rainy(X), !, cold(X).
snowy (C) COld(§eattle)
fails; no
c=X backtracking
snowy (X) to rainy (X) .

GOAL FAILS.
% |\

cold (X)

, . cold (rochester)
railny (seattle) rainy (rochester)

C. Varela 6

Cut (!) Example 2

rainy (seattle).

rainy (rochester) .

cold (rochester).

snowy (X) :—- rainy(X), !, cold(X).
snowy (troy) .

C. Varela

Cut (!) Example 2

rainy (seattle) . C = troy FAILS

rainy (rochester) . | | | snowy (X) is committed

to bindings (X =
snowy (X) :—- rainy(X), !, cold(X). seattle) .

cold (rochester) .

(X)
snowy (troy) . snowy (C)
OR GOAL FAILS.
C = troy
= X
snowy (X) snowy (troy)

% | ~)

//// rainy (X)

: cold (X)
X = seattle
. . cold (rochester)
railny (seattle) rainy (rochester)

C. Varela 8

Cut (!) Example 3

rainy (seattle) :- !.

rainy (rochester) .

cold (rochester).

snowy (X) :- rainy(X), cold(X).
snowy (troy) .

C. Varela

Cut (!) Example 3

rainy(seattle) :- !. C = troy SUCCEEDS

rainy (rochester) . | | | Only rainy(X) is

cold(rochester) . committed to

oy (tpogy e SRR snowy (C) bindings (X =
OR
C = troy
_Cc= X
snowy (X) snowy (troy)
/ AND ~)
//// rainy(XL//////, cold (X)

cold (rochester)

X = seattle
/L’/:::::::%5R~
rainy (seattle)

0 C. Varela 10

rainy (rochester)

Cut (!) Example 4

rainy (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :— !, rainy(X), cold(X).

C. Varela

11

Cut (!) Example 4

rainy (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :-= !, rainy(X), cold(X).

snowy (C)

C= X success

snowy (X)

cold (seattle)
AND fails;
/N backtrack.

/ rainY(X) COld(X

X = seattle % hest
= rochester
"”’,/////,/”ESIi\‘\\~\-\\\\\\\\
)

rainy (roches®ter)

ai eattle

C. Varela 12

Cut (!) Example 5

rainy (seattle).

rainy (rochester) .
cold (rochester) .

snowy (X)

:— rainy(X), cold(

C. Varela

X) s

.

13

Cut (!) Example 5

rainy (seattle).
rainy (rochester) .
cold (rochester) .

snowy (X) :- rainy(X), cold(X), !.
snowy (C)
_Cc= X success
snowy (X)
/ rainy (X) cold (X)
X = seattle %
"”’,/////,/”ESIi\‘\\~\-\\\\\\\\

al eattle) rainy (rochester)

C. Varela 14

First-Class Terms

call (P)

Invoke predicate as a goal.

assert (P)

Adds predicate to database.

retract (P)

Removes predicate from
database.

functor (T, F, A)

Succeeds if T 1s a term with
functor ¥ and arity A.

C. Varela

15

not P 1snot =P

« In Prolog, the database of facts and rules includes a list of things
assumed to be true.

» It does not include anything assumed to be false.

« Unless our database contains everything that 1s true (the c/osed-world
assumption), the goal not P (or \+ P in some Prolog
implementations) can succeed simply because our current knowledge
1s insufficient to prove P.

C. Varela 16

More not vs -

?= snowy (X) .
X = rochester

?= not (snowy (X)) .
no

Prolog does not reply: X = seattle.
The meaning of not (snowy (X)) 1is:
-dX [snowy (X)]

rather than:
dX [-snowy (X)]

C. Varela

17

Fail, true, repeat

fail Fails current goal.

true Always succeeds.

repeat Always succeeds, provides
infinite choice points.

repeat.

repeat :— repeat.

C. Varela

not Semantics

not (P) :— call(P), !, fail.
not (P) .

Definition of not in terms of failure (fail) means that variable
bindings are lost whenever not succeeds, e.g.:

?= not (not (snowy (X))) .
X= G147

C. Varela

19

Conditionals and Loops

statement :- condition, !, then.

statement :— else.

natural (1) .
natural (N) :-= natural(M), N 1s M+1.
my loop(N) :— N>O0,
natural (I), I<=N,
write (I), nl,
T=N,
', fail.

Also called generate-and-test.
C. Varela 20

Prolog lists

[a,b, c] 1issyntactic sugar for:

where [] 1isthe empty list,and . 1is a built-in cons-like functor.

[a,b, c] can also be expressed as:

[a | [b,c]] ,or
[a, b | [c]] ,or
[a,b,c | []]

C. Varela

21

Prolog lists append example

append([],L,L) .
append ([H|T], A, [HIL]) :- append(T,A,L).

C. Varela

22

10.
11.

Exercises

What do the following Prolog queries do?

?— repeat.

?= repeat, true.

?— repeat, fail.

Corroborate your thinking with a Prolog interpreter.

Draw the search tree for the query “not (not (snowy (City)))”.
When are variables bound/unbound in the search/backtracking
process?

PLP Exercise 11.6 (pg 571).
PLP Exercise 11.7 (pg 571).

C. Varela 23

