Declarative Programming Techniques
Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

February 7, 2011
Accumulators

Accumulator programming is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.

Assume that the state S consists of a number of components to be transformed individually:

$$ S = (X,Y,Z,...) $$

For each predicate P, each state component is made into a pair, the first component is the *input* state and the second component is the output state after P has terminated.

S is represented as

$$ (X_{in}, X_{out}, Y_{in}, Y_{out}, Z_{in}, Z_{out},...) $$
A Trivial Example in Prolog

```
increment(N0,N) :-
    N is N0 + 1.

square(N0,N) :-
    N is N0 * N0.

inc_square(N0,N) :-
    increment(N0,N1),
    square(N1,N).
```

increment takes \(N_0 \) as the input and produces \(N \) as the output by adding 1 to \(N_0 \).

square takes \(N_0 \) as the input and produces \(N \) as the output by multiplying \(N_0 \) to itself.

inc_square takes \(N_0 \) as the input and produces \(N \) as the output by using an intermediate variable \(N_1 \) to carry \(N_0 + 1 \) (the output of *increment*) and passing it as input to *square*. The pairs \(N_0-N_1 \) and \(N_1-N \) are called *accumulators*.
A Trivial Example in Oz

```
proc {Increment N0 N}
    N = N0 + 1
end

proc {Square N0 N}
    N = N0 * N0
end

proc {IncSquare N0 N}
    N1 in
    {Increment N0 N1}
    {Square N1 N}
end
```

Increment takes N0 as the input and produces N as the output by adding 1 to N0.

Square takes N0 as the input and produces N as the output by multiplying N0 to itself.

IncSquare takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **Increment**) and passing it as input to **Square**. The pairs N0-N1 and N1-N are called *accumulators*.
Accumulators

• Assume that the state S consists of a number of components to be transformed individually:

$$S = (X, Y, Z)$$

• Assume P_1 to P_n are procedures in Oz

```plaintext
proc {P X_0 X Y_0 Y Z_0 Z} 
  {P1 X_0 X_1 Y_0 Y_1 Z_0 Z_1} 
  {P2 X_1 X_2 Y_1 Y_2 Z_1 Z_2} 
  ... 
  {Pn X_{n-1} X_{Y_{n-1}} Y_{Z_{n-1}} Z}
end
```

• The procedural syntax is easier to use if there is more than one accumulator

The same concept applies to predicates in Prolog
MergeSort Example

• Consider a variant of MergeSort with accumulator
• proc {MergeSort1 N S0 S Xs}
 – N is an integer,
 – S0 is an input list to be sorted
 – S is the remainder of S0 after the first N elements are sorted
 – Xs is the sorted first N elements of S0
• The pair (S0, S) is an accumulator
• The definition is in a procedural syntax in Oz because it has two outputs S and Xs
Example (2)

fun {MergeSort Xs}
 {MergeSort1 {Length Xs} Xs_ Ys}
 Ys
end

proc {MergeSort1 N S0 S Xs}
 if N==0 then S = S0 Xs = nil
 elseif N ==1 then X in X|S = S0 Xs=[X]
 else %% N > 1
 local S1 Xs1 Xs2 NL NR in
 NL = N div 2
 NR = N - NL
 {MergeSort1 NL S0 S1 Xs1}
 {MergeSort1 NR S1 S Xs2}
 Xs = {Merge Xs1 Xs2}
 end
end
end
MergeSort Example in Prolog

mergesort(Xs,Ys) :-
 length(Xs,N),
 mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,S0,S,Xs) :-
 NL is N // 2,
 NR is N - NL,
 mergesort1(NL,S0,S1,Xs1),
 mergesort1(NR,S1,S,Xs2),
 merge(Xs1,Xs2,Xs).
Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: (1+4)-3
- The machine executes the following instructions
 push(1)
 push(4)
 plus
 push(3)
 minus

\[
\begin{array}{c}
4 \\
1 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
5 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
3 \\
5 \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 \\
\end{array}
\]
Multiple accumulators (2)

- Example: (1+4)-3
- The arithmetic expressions are represented as trees:
 \[\text{minus(plus(1 4) 3)} \]
- Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

```
proc {ExprCode Expr Cin Cout Nin Nout}

  // Cin: initial list of instructions
  // Cout: final list of instructions
  // Nin: initial count
  // Nout: final count
```

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Multiple accumulators (3)

```plaintext
proc {ExprCode Expr C0 C N0 N}
  case Expr
  of plus(Expr1 Expr2) then C1 N1 in
    C1 = plus|C0
    N1 = N0 + 1
    {SeqCode [Expr2 Expr1] C1 C N1 N}
  [ minus(Expr1 Expr2) then C1 N1 in
    C1 = minus|C0
    N1 = N0 + 1
    {SeqCode [Expr2 Expr1] C1 C N1 N}
  [I andthen {IsInt I} then
    C = push(I)|C0
    N = N0 + 1
  end
end
```
Multiple accumulators (4)

```
proc {ExprCode Expr C0 C N0 N}
    case Expr
    of plus(Expr1 Expr2) then C1 N1 in
        C1 = plus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] minus(Expr1 Expr2) then C1 N1 in
        C1 = minus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] I andthen {IsInt I} then
        C = push(I)|C0
        N = N0 + 1
    end
end

proc {SeqCode Es C0 C N0 N}
    case Es
    of nil then C = C0 N = N0
    [] E|Er then N1 C1 in
        {ExprCode E C0 C1 N0 N1}
        {SeqCode Er C1 C N1 N}
    end
end
```
Shorter version (4)

```plaintext
proc \{ExprCode Expr C0 C N0 N\}
  case Expr
  of plus(Expr1 Expr2) then
    \{SeqCode [Expr2 Expr1] plus\[C0 C N0 + 1 N\}\}
  minus(Expr1 Expr2) then
    \{SeqCode [Expr2 Expr1] minus\[C0 C N0 + 1 N\}\}
  I andthen \{IsInt I\} then
    C = push(I)\[C0
    N = N0 + 1
  end
end

proc \{SeqCode Es C0 C N0 N\}
  case Es
  of nil then C = C0 N = N0
  E|Er then N1 C1 in
    \{ExprCode E C0 C1 N0 N1\}
    \{SeqCode Er C1 C N1 N\}
  end
end
```
Functional style (4)

fun \{ExprCode Expr t(C0 N0) \}
 case Expr
 of plus(Expr1 Expr2) then
 \{SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)\}
 [] minus(Expr1 Expr2) then
 \{SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)\}
 [] I andthen \{IsInt I\} then
 t(push(I)|C0 N0 + 1)
 end
end

fun \{SeqCode Es T\}
 case Es
 of nil then T
 [] E|Er then
 T1 = \{ExprCode E T\} in
 \{SeqCode Er T1\}
 end
end
Difference lists in Oz

• A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list

• $X \# X$ % Represent the empty list

• nil # nil % idem

• [a] # [a] % idem

• (a|b|c|X) # X % Represents [a b c]

• [a b c d] # [d] % idem
Difference lists in Prolog

- A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list.
- X, X % Represent the empty list
- [], [] % idem
- [a], [a] % idem
- [a,b,c|X], X % Represents [a,b,c]
- [a,b,c,d], [d] % idem
Difference lists in Oz (2)

• When the second list is unbound, an append operation with another difference list takes constant time

```
fun {AppendD D1 D2}
   S1 # E1 = D1
   S2 # E2 = D2
in
   E1 = S2
   S1 # E2
end
```

• `local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end`

• Displays `(1|2|3|4|5|Y)#Y`
Difference lists in Prolog (2)

• When the second list is unbound, an append operation with another difference list takes constant time

\[
\text{append_dl}(S1, E1, S2, E2, S1, E2) :- E1 = S2.
\]

• \texttt{?- append_dl([1,2,3\mid X], X, [4,5\mid Y], Y, S,E).} Displays

\[
\begin{align*}
X &= [4, 5\mid _G193] \\
Y &= _G193 \\
S &= [1, 2, 3, 4, 5\mid _G193] \\
E &= _G193 ;
\end{align*}
\]
A FIFO queue with difference lists (1)

- A *FIFO queue* is a sequence of elements with an insert and a delete operation.
 - Insert adds an element to one end and delete removes it from the other end
- Queues can be implemented with lists. If L represents the queue content, then inserting X gives X|L and deleting X gives {ButLast L X} (all elements but the last).
 - Delete is inefficient: it takes time proportional to the number of queue elements
- With difference lists we can implement a queue with constant-time insert and delete operations
 - The queue content is represented as q(N S E), where N is the number of elements and S#E is a difference list representing the elements
A FIFO queue with difference lists (2)

- Inserting ‘b’:
 - In: $q(1 \ a|T \ T)$
 - Out: $q(2 \ a|b|U \ U)$

- Deleting X:
 - In: $q(2 \ a|b|U \ U)$
 - Out: $q(1 \ b|U \ U)$
 - and $X=a$

- Difference list allows operations at both ends

- N is needed to keep track of the number of queue elements

```haskell
fun {NewQueue} X in q(0 \ X \ X) end

fun {Insert Q X}
  case Q of q(N \ S \ E) then E1 in E=X|E1 q(N+1 \ S \ E1) end end

fun {Delete Q X}
  case Q of q(N \ S \ E) then S1 in X|S1=S q(N-1 \ S1 \ E) end end

fun {EmptyQueue} case Q of q(N \ S \ E) then N==0 end end
```
fun `{Flatten Xs}
 case Xs
 of nil then nil
 [] X|Xr andthen `{IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
 end

`Flatten (revisited)`

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.:

`{Flatten [1 [2] [[3]]]} = [1 2 3]`

Let us replace lists by difference lists and see what happens.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Flatten with difference lists (1)

- Flatten of nil is X#X
- Flatten of X|Xr is Y1#Y where
 - flatten of X is Y1#Y2
 - flatten of Xr is Y3#Y
 - equate Y2 and Y3
- Flatten of a leaf X is (X|Y)#Y

Here is what it looks like as text
proc {FlattenD Xs Ds}
case Xs
 of nil then Y in Ds = Y#Y
 [] X|Xr then Y0 Y1 Y2 in
 Ds = Y0#Y2
 {FlattenD X Y0#Y1}
 {FlattenD Xr Y1#Y2}
 [] X andthen {IsLeaf X} then Y in (X|Y)#Y
end
end

fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end

Here is the new program. It is much more efficient than the first version.
Reverse (revisited)

- Here is our recursive reverse:

```fun
{Reverse Xs}
case Xs
  of nil then nil
  [] X|Xr then {Append {Reverse Xr} [X]}
end
end```

- Rewrite this with difference lists:
  - Reverse of nil is X#X
  - Reverse of X|Xs is Y1#Y, where
    - reverse of Xs is Y1#Y2, and
    - equate Y2 and X|Y
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length.
- Using difference lists in the naive version makes it linear time.
- We use two arguments $Y_1$ and $Y$ instead of $Y_1#Y$.
- With a minor change we can make it iterative as well.

```
fun {ReverseD Xs}
 proc {ReverseD Xs Y1 Y}
 case Xs
 of nil then Y1=Y
 [] X|Xr then Y2 in
 {ReverseD Xr Y1 Y2}
 Y2 = X|Y
 end
 end
 end
R in
{ReverseD Xs R nil}
end
```
Reverse with difference lists (2)

fun {ReverseD Xs}
  proc {ReverseD Xs Y1 Y}
    case Xs
    of nil then Y1=Y
    [] X|Xr then
      {ReverseD Xr Y1 X|Y}
    end
    end
  end
  R in
  {ReverseD Xs R nil}
  R
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Difference lists: Summary

- Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time
  - A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
  - The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out
- Difference lists are declarative, yet have some of the power of destructive assignment
  - Because of the single-assignment property of dataflow variables
- Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.
Exercises

15. Draw the search trees for Prolog queries:
   • `append([1, 2], [3], L).`
   • `append(X, Y, [1, 2, 3]).`
   • `append_dl([1, 2|X], X, [3|Y], Y, S, E).`

16. Rewrite the multiple accumulators example in Prolog.

17. VRH Exercise 3.10.11 (page 232)

18. VRH Exercise 3.10.14 (page 232)

19. VRH Exercise 3.10.15 (page 232)