Concurrent Programming
Actors, SALSA, Coordination Abstractions

Carlos Varela
Rensselaer Polytechnic Institute

April 18, 2011
Advantages of concurrent programs

• Reactive programming
 – User can interact with applications while tasks are running, e.g., stopping the transfer of a big file in a web browser.

• Availability of services
 – Long-running tasks need not delay short-running ones, e.g., a web server can serve an entry page while at the same time processing a complex query.

• Parallelism
 – Complex programs can make better use of multiple resources in new multi-core processor architectures, SMPs, LANs or WANs, e.g., scientific/engineering applications, simulations, games, etc.

• Controllability
 – Tasks requiring certain preconditions can suspend and wait until the preconditions hold, then resume execution transparently.
Disadvantages of concurrent programs

- **Safety**
 - “Nothing bad ever happens”
 - Concurrent tasks should not corrupt consistent state of program
- **Liveness**
 - “Anything ever happens at all”
 - Tasks should not suspend and indefinitely wait for each other (deadlock).
- **Non-determinism**
 - Mastering exponential number of interleavings due to different schedules.
- **Resource consumption**
 - Threads can be expensive. Overhead of scheduling, context-switching, and synchronization.
 - Concurrent programs can run slower than their sequential counterparts even with multiple CPUs!
Overview of concurrent programming

• There are four basic approaches:
 – Sequential programming (no concurrency)
 – Declarative concurrency (streams in a functional language)
 – Message passing with active objects (Erlang, SALSA)
 – Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
 – Use the simplest approach that does the job: sequential if that is ok, else declarative concurrency if there is no observable nondeterminism, else message passing if you can get away with it.
Actors/SALSA

- **Actor Model**
 - A reasoning framework to model concurrent computations
 - Programming abstractions for distributed open systems

- **SALSA**
 - Simple Actor Language System and Architecture
 - An actor-oriented language for mobile and internet computing
 - Programming abstractions for internet-based concurrency, distribution, mobility, and coordination

SALSA and Java

- SALSA source files are compiled into Java source files before being compiled into Java byte code.
- SALSA programs may take full advantage of the Java API.
Hello World Example

module examples.helloworld;

behavior HelloWorld {

 void act(String[] args) {

 standardOutput <- print("Hello") @
 standardOutput <- println("World!");

 }

}
Hello World Example

- The `act(String[] args)` message handler is similar to the `main(...)` method in Java and is used to bootstrap SALSA programs.

- When a SALSA program is executed, an actor of the given behavior is created and an `act(args)` message is sent to this actor with any given command-line arguments.

- References to `standardOutput`, `standardInput` and `standardError` actors are available to all SALSA actors.
SALSA Support for Actors

• Programmers define *behaviors* for actors.

• Messages are sent asynchronously.

• State is modeled as encapsulated objects/primitive types.

• Messages are modeled as potential method invocations.

• Continuation primitives are used for coordination.
module examples.cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {
 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }
}
Actor Creation

• To create an actor:

```java
TravelAgent a = new TravelAgent();
```
Message Sending

• To create an actor:

\[
\text{TravelAgent } a = \text{new TravelAgent}();
\]

• To send a message:

\[
a \leftarrow \text{book(flight)};
\]
Causal order

• In a sequential program all execution states are totally ordered

• In a concurrent program all execution states of a given actor are totally ordered

• The execution state of the concurrent program as a whole is partially ordered
Total order

- In a sequential program all execution states are totally ordered
Causal order in the actor model

- In a concurrent program all execution states of a given actor are totally ordered.
- The execution state of the concurrent program is partially ordered.
Nondeterminism

• An execution is nondeterministic if there is a computation step in which there is a choice what to do next

• Nondeterminism appears naturally when there is asynchronous message passing
 – Messages can arrive or be processed in an order different from the sending order.
Example of nondeterminism

Actor 1

Actor 2

Actor a

Actor a can receive messages \texttt{m1()} and \texttt{m2()} in any order.
Coordination Primitives

- SALSA provides three main coordination constructs:
 - **Token-passing continuations**
 - To synchronize concurrent activities
 - To notify completion of message processing
 - Named tokens enable arbitrary synchronization (data-flow)
 - **Join blocks**
 - Used for barrier synchronization for multiple concurrent activities
 - To obtain results from otherwise independent concurrent processes
 - **First-class continuations**
 - To delegate producing a result to a third-party actor
Token Passing Continuations

• Ensures that each message in the continuation expression is sent after the previous message has been **processed**. It also enables the use of a message handler return value as an argument for a later message (through the `token` keyword).

 – Example:

    ```
    a1 <- m1() @
    a2 <- m2( token );
    ```

 Send `m1` to `a1` asking `a1` to forward the result of processing `m1` to `a2` (as the argument of message `m2`).
Named Tokens

- Tokens can be named to enable more loosely-coupled synchronization

 Example:

  ```
  token t1 = a1 <- m1();
  token t2 = a2 <- m2();
  token t3 = a3 <- m3(t1);
  token t4 = a4 <- m4(t2);
  a <- m(t1,t2,t3,t4);
  ```

 Sending $m(\ldots)$ *to* a *will be delayed until messages* $m_1() \ldots m_4()$ *have been processed.* $m_1()$ *can proceed concurrently with* $m_2()$.
Causal order in the actor model

- Create new actor
- Bind a token
- Synchronize on a token

Computation step
module examples.cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell("Hello");
 standardOutput <- print("Initial Value:") @
 c <- get() @
 standardOutput <- println(token) @
 c <- set("World") @
 standardOutput <- print("New Value:") @
 c <- get() @
 standardOutput <- println(token);

 }

}
Join Blocks

• Provide a mechanism for synchronizing the processing of a set of messages.
• Set of results is sent along as a *token* containing an array of results.
 – Example:

  ```java
  Actor[] actors = { searcher0, searcher1, searcher2, searcher3 };  
  
  join {
    for (int i=0; i < actors.length; i++){
      actors[i] <- find( phrase );
    }
  }  
  @ resultActor <- output( token );
  
  **Send the find( phrase ) message to each actor in actors[] then after all have completed send the result to resultActor as the argument of an output( ... ) message.**
  ```

C. Varela
Example: Acknowledged Multicast

\[
\text{join}\{ \ a_1 \leftarrow m_1(); \ a_2 \leftarrow m_2(); \ \ldots \ \ a_n \leftarrow m_n(); \ \} \ \ @ \\
\text{cust} \leftarrow n(\text{token});
\]
Lines of Code Comparison

<table>
<thead>
<tr>
<th>Acknowledged Multicast</th>
<th>Java</th>
<th>Foundry</th>
<th>SALSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168</td>
<td>100</td>
<td>31</td>
</tr>
</tbody>
</table>
• Enable actors to delegate computation to a third party independently of the processing context.

• For example:

```c
int m(...) {
    b <- n(...) @ currentContinuation;
}
```

Ask (delegate) actor \(b \) to respond to this message \(m \) on behalf of current actor \(\text{self} \) by processing its own message \(n \).
Delegate Example

```java
module examples.fibonacci;

behavior Calculator {

  int fib(int n) {
    Fibonacci f = new Fibonacci(n);
    f <- compute() @ currentContinuation;
  }

  int add(int n1, int n2) { return n1+n2; }

  void act(String args[]) {
    fib(15) @ standardOutput <- println(token);
    fib(5) @ add(token,3) @
    standardOutput <- println(token);
  }
}
```

C. Varela
module examples.fibonacci;

behavior Fibonacci {
 int n;

 Fibonacci(int n) { this.n = n; }

 int add(int x, int y) { return x + y; }

 int compute() {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib1 = new Fibonacci(n-1);
 Fibonacci fib2 = new Fibonacci(n-2);
 token x = fib1<-compute();
 token y = fib2<-compute();
 add(x,y) @ currentContinuation;
 }
 }

 void act(String args[]) {
 n = Integer.parseInt(args[0]);
 compute() @ standardOutput<-println(token);
 }
}
module examples.fibonacci2;

behavior Fibonacci {

 int add(int x, int y) { return x + y; }

 int compute(int n) {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib = new Fibonacci();
 token x = fib <- compute(n-1);
 compute(n-2) @ add(x, token) @ currentContinuation;
 }
 }

 void act(String args[]) {
 int n = Integer.parseInt(args[0]);
 compute(n) @ standardOutput<-println(token);
 }
}

C. Varela
Execution of salsa Fibonacci 6
Exercises

75. How would you implement the join continuation linguistic abstraction in terms of message passing?

76. Download and execute the CellTester.salsa example.

77. Write a solution to the Flavius Josephus problem in SALSA. A description of the problem is at VRH Section 7.8.3 (page 558).