Declarative Computation Model

Kernel language semantics
Basic concepts, the abstract machine (VRH 2.4.1-2.4.2)

Carlos Varela
RPI
March 7, 2011

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Sequential declarative computation model

• The single assignment store
 – declarative (dataflow) variables
 – partial values (variables and values are also called *entities*)

• The kernel language syntax

• The *kernel language semantics*
 – The environment: maps textual variable names (variable identifiers) into entities in the store
 – Interpretation (execution) of the kernel language elements (statements) by the use of an abstract machine
 – Abstract machine consists of an execution stack of statements transforming the store
Kernel language syntax

The following defines the syntax of a statement, $\langle s \rangle$ denotes a statement

$$
\langle s \rangle ::= \text{skip} \\
| \langle x \rangle = \langle y \rangle \\
| \langle x \rangle = \langle v \rangle \\
| \langle s_1 \rangle \langle s_2 \rangle \\
| \text{local} \langle x \rangle \text{ in } \langle s_1 \rangle \text{ end} \\
| \text{if} \langle x \rangle \text{ then } \langle s_1 \rangle \text{ else } \langle s_2 \rangle \text{ end} \\
| \{ \langle x \rangle \langle y_1 \rangle \ldots \langle y_n \rangle \} \\
| \text{case} \langle x \rangle \text{ of } \langle \text{pattern} \rangle \text{ then } \langle s_1 \rangle \text{ else } \langle s_2 \rangle \text{ end} \\

\langle v \rangle ::= \text{proc} \{ \$, \langle y_1 \rangle \ldots \langle y_n \rangle \} \langle s_1 \rangle \text{ end} | \ldots

\langle \text{pattern} \rangle ::= \ldots

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration
conditional
procedural application
pattern matching

value expression
Examples

• local X in X = 1 end

• local X Y T Z in
 X = 5
 Y = 10
 T = (X>=Y)
 if T then Z = X else Z = Y end
 {Browse Z}
end

• local S T in
 S = proc {X Y} Y = X*X end
 {S 5 T}
 {Browse T}
end
Procedure abstraction

- Any statement can be abstracted to a procedure by selecting a number of the ‘free’ variable identifiers and enclosing the statement into a procedure with the identifiers as parameters.

- \(\text{if } X \geq Y \text{ then } Z = X \text{ else } Z = Y \text{ end} \)

- Abstracting over all variables
 \[
 \text{proc } \{\text{Max } X \ Y \ Z}\]
 \[
 \text{if } X \geq Y \text{ then } Z = X \text{ else } Z = Y \text{ end}
 \]

- Abstracting over \(X \) and \(Z \)
 \[
 \text{proc } \{\text{LowerBound } X \ Z}\]
 \[
 \text{if } X \geq Y \text{ then } Z = X \text{ else } Z = Y \text{ end}
 \]
Computations (abstract machine)

• A computation defines how the execution state is transformed step by step from the initial state to the final state

• A single assignment store σ is a set of store variables, a variable may be unbound, bound to a partial value, or bound to a group of other variables

• An environment E is mapping from variable identifiers to variables or values in σ, e.g. $\{X \rightarrow x_1, Y \rightarrow x_2\}$

• A semantic statement is a pair
 $$(\langle s \rangle, E)$$
 where $\langle s \rangle$ is a statement

• ST is a stack of semantic statements
Computations (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state.
- The execution state is a pair (ST, σ).
- ST is a stack of semantic statements.
- A computation is a sequence of execution states $(ST_0, \sigma_0) \rightarrow (ST_1, \sigma_1) \rightarrow (ST_2, \sigma_2) \rightarrow \ldots$.
Semantics

• To execute a program (i.e., a statement) \(\langle s \rangle \) the initial execution state is

 \[
 ([(\langle s \rangle , \emptyset)] , \emptyset)
 \]

• \(ST \) has a single semantic statement \((\langle s \rangle , \emptyset) \)

• The environment \(E \) is empty, and the store \(\sigma \) is empty

• \([...]\) denotes the stack

• At each step the first element of \(ST \) is popped and execution proceeds according to the form of the element

• The final execution state (if any) is a state in which \(ST \) is empty
• The semantic statement is
 (skip, E)
• Continue to next execution step
• The semantic statement is
 \((\text{skip}, E)\)
• Continue to next execution step

\[
\begin{array}{c}
\text{(skip, } E) \\
\text{ST}
\end{array}
\begin{array}{c}
\sigma
\end{array}
\begin{array}{c}
\text{ST}
\end{array}
\begin{array}{c}
\sigma
\end{array}
\]
Sequential composition

• The semantic statement is
 \[(\langle s_1 \rangle \langle s_2 \rangle , E)\]
• Push \((\langle s_2 \rangle , E)\) and then push \((\langle s_1 \rangle , E)\) on ST
• Continue to next execution step

\[
\begin{array}{c|c}
(\langle s_1 \rangle \langle s_2 \rangle , E) & \sigma \\
ST & \sigma
\end{array}
\]
Calculating with environments

- E is mapping from identifiers to entities (both store variables and values) in the store
- The notation $E(\langle y \rangle)$ retrieves the entity x associated with the identifier $\langle y \rangle$ from the store
- The notation $E + \{ \langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n \}$
 - denotes a new environment E' constructed from E by adding the mappings
 $\{ \langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n \}$
 - $E'(\langle z \rangle)$ is x_k if $\langle z \rangle$ is equal to $\langle y \rangle_k$, otherwise $E'(\langle z \rangle)$ is equal to $E(\langle z \rangle)$
- The notation $E|_{\{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n\}}$ denotes the projection of E onto the set $\{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n\}$, i.e., E restricted to the members of the set
Calculating with environments (2)

• \(E = \{X \rightarrow 1, \ Y \rightarrow [2 \ 3], \ Z \rightarrow x_i\} \)
• \(E' = E + \{X \rightarrow 2\} \)
• \(E'(X) = 2, \ E(X) = 1 \)
• \(E|_{\{X,Y\}} \) restricts \(E \) to the ’domain’ \(\{X,Y\} \), i.e., it is equal to \(\{X \rightarrow 1, \ Y \rightarrow [2 \ 3]\} \)
Calculating with environments (3)

- `local X in
 \[X = 1\] \quad (E)

 `local X in
 \[X = 2\] \quad (E')

 \{Browse X\}

end \quad (E)

\{Browse X\}

end`
Lexical scoping

• Free and bound identifier occurrences
• An identifier occurrence is *bound* with respect to a statement \(s\) if it is in the scope of a declaration inside \(s\)
• A variable identifier is declared either by a ‘local’ statement, as a parameter of a procedure, or implicitly declared by a case statement
• An identifier occurrence is *free* otherwise
• In a running program every identifier is bound (i.e., declared)
Lexical scoping (2)

- proc {P X}
 local Y in Y = 1 {Browse Y} end
 X = Y
end

Free Occurrences
Bound Occurrences
Lexical scoping (3)

- `local Arg1 Arg2 in`

 `Arg1 = 111*111`

 `Arg2 = 999*999`

 `Res = Arg1*Arg2`

 `end`

This is not a runnable program!
Lexical scoping (4)

- `local Res in`

 `local Arg1 Arg2 in`

 Arg1 = 111*111
 Arg2 = 999*999
 Res = Arg1*Arg2

 end

 {Browse Res}

end
Lexical scoping (5)

local P Q in
 proc {P} {Q} end
 proc {Q} {Browse hello} end
local Q in
 proc {Q} {Browse hi} end
 {P}
end
end
42. Translate the following function to the kernel language:

```plaintext
fun AddList L1 L2
  case L1 of H1|T1 then
    case L2 of H2|T2 then
      H1+H2|AddList T1 T2
    end
  else nil end
end
```

43. Translate the following function call to the kernel language:

```plaintext
{Browse {Max 5 7}}
```
Exercises

44. Explain the difference between static scoping and dynamic scoping. Give an example program that produces different results with static and dynamic scoping.

45. Think of a reason why static scoping may be preferable to dynamic scoping. Think of a reason why dynamic scoping may be preferable to static scoping.