Declarative Programming Techniques
Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

February 9, 2012
Accumulators

• *Accumulator programming* is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.

• Assume that the state S consists of a number of components to be transformed individually:

$$S = (X, Y, Z, ...)$$

• For each predicate P, each state component is made into a pair, the first component is the *input* state and the second component is the output state after P has terminated

• S is represented as

$$(X_{in}, X_{out}, Y_{in}, Y_{out}, Z_{in}, Z_{out}, ...)$$
A Trivial Example in Prolog

increment(N0,N) :-
 N is N0 + 1.

square(N0,N) :-
 N is N0 * N0.

inc_square(N0,N) :-
 increment(N0,N1),
 square(N1,N).

increment takes N0 as the input and produces N as the output by adding 1 to N0.

square takes N0 as the input and produces N as the output by multiplying N0 to itself.

inc_square takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of increment) and passing it as input to square. The pairs N0-N1 and N1-N are called accumulators.
A Trivial Example in Oz

```oz
proc {Increment N0 N}
    N = N0 + 1
end

proc {Square N0 N}
    N = N0 * N0
end

proc {IncSquare N0 N} in
    {Increment N0 N1}
    {Square N1 N}
end
```

Increment takes N0 as the input and produces N as the output by adding 1 to N0.

Square takes N0 as the input and produces N as the output by multiplying N0 to itself.

IncSquare takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **Increment**) and passing it as input to **Square**. The pairs N0-N1 and N1-N are called *accumulators*.
Accumulators

- Assume that the state S consists of a number of components to be transformed individually:
 \[S = (X,Y,Z) \]
- Assume P_1 to P_n are procedures in Oz

```
proc {P X_0 X Y_0 Y Z_0 Z}:
  {P1 X_0 X_1 Y_0 Y_1 Z_0 Z_1}
  {P2 X_1 X_2 Y_1 Y_2 Z_1 Z_2}
  \vdots
  {Pn X_{n-1} X Y_{n-1} Y Z_{n-1} Z}
end
```

- The procedural syntax is easier to use if there is more than one accumulator

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
MergeSort Example

• Consider a variant of MergeSort with accumulator

• `proc {MergeSort1 N S0 S Xs}
 – N is an integer,
 – S0 is an input list to be sorted
 – S is the remainder of S0 after the first N elements are sorted
 – Xs is the sorted first N elements of S0

• The pair (S0, S) is an accumulator

• The definition is in a procedural syntax in Oz because it has two outputs S and Xs
Example (2)

fun {MergeSort Xs}
 {MergeSort1 {Length Xs} Xs _ Ys}
 Ys
end

proc {MergeSort1 N S0 S Xs}
 if N==0 then S = S0 Xs = nil
 elseif N ==1 then X in X|S = S0 Xs=[X]
 else
 local S1 Xs1 Xs2 NL NR in
 NL = N div 2
 NR = N - NL
 {MergeSort1 NL S0 S1 Xs1}
 {MergeSort1 NR S1 S Xs2}
 Xs = {Merge Xs1 Xs2}
 end
end
end
MergeSort Example in Prolog

mergesort(Xs,Ys) :-
 length(Xs,N),
 mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,S0,S,Xs) :-
 NL is N // 2,
 NR is N - NL,
 mergesort1(NL,S0,S1,Xs1),
 mergesort1(NR,S1,S,Xs2),
 merge(Xs1,Xs2,Xs).
Multiple accumulators

• Consider a stack machine for evaluating arithmetic expressions
• Example: (1+4)-3
• The machine executes the following instructions
 push(1)
 push(4)
 plus
 push(3)
 minus

4
1
5
3
5
2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Multiple accumulators (2)

- Example: (1+4)-3
- The arithmetic expressions are represented as trees:
 \[
 \text{minus(plus(1 4) 3)}
 \]
- Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

\[
\text{proc \{ExprCode Expr Cin Cout Nin Nout\}}
\]

- Cin: initial list of instructions
- Cout: final list of instructions
- Nin: initial count
- Nout: final count
Multiple accumulators (3)

```plaintext
proc {ExprCode Expr C0 C N0 N}
    case Expr
        of plus(Expr1 Expr2) then C1 N1 in
            C1 = plus|C0
            N1 = N0 + 1
            {SeqCode [Expr2 Expr1] C1 C N1 N}
        [] minus(Expr1 Expr2) then C1 N1 in
            C1 = minus|C0
            N1 = N0 + 1
            {SeqCode [Expr2 Expr1] C1 C N1 N}
        [] I andthen {IsInt I} then
            C = push(I)|C0
            N = N0 + 1
        end
    end
end
```
Multiple accumulators (4)

```plaintext
proc {ExprCode Expr C0 C N0 N}
    case Expr
    of plus(Expr1 Expr2) then C1 N1 in
        C1 = plus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] minus(Expr1 Expr2) then C1 N1 in
        C1 = minus|C0
        N1 = N0 + 1
        {SeqCode [Expr2 Expr1] C1 C N1 N}
    [] I andthen {IsInt I} then
        C = push(I)|C0
        N = N0 + 1
    end
end
```

```plaintext
proc {SeqCode Es C0 C N0 N}
    case Es
    of nil then C = C0 N = N0
    [] E|Er then N1 C1 in
        {ExprCode E C0 C1 N0 N1}
        {SeqCode Er C1 C N1 N}
    end
end
```
Shorter version (4)

```
proc {ExprCode Expr C0 C N0 N}
    case Expr
        of plus(Expr1 Expr2) then
            {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}
        [ minus(Expr1 Expr2) then
            {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
        [ I andthen {IsInt I} then
            C = push(I)|C0
            N = N0 + 1
        end
    end
end

proc {SeqCode Es C0 C N0 N}
    case Es
        of nil then C = C0 N = N0
        [] E|Er then N1 C1 in
            {ExprCode E C0 C1 N0 N1}
            {SeqCode Er C1 C N1 N}
        end
    end
end
```
Functional style (4)

```plaintext
fun {ExprCode Expr t(C0 N0) }
  case Expr
  of plus(Expr1 Expr2) then
    {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}
  end

fun {SeqCode Es T}
  case Es
  of nil then T
  [] E|Er then
    T1 = {ExprCode E T} in
    {SeqCode Er T1}
  end
end
```
Difference lists in Oz

• A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list
 • $X \# X$ % Represent the empty list
 • $nil \# nil$ % idem
 • $[a] \# [a]$ % idem
 • $(a|b|c|X) \# X$ % Represents $[a \ b \ c]$
 • $[a \ b \ c \ d] \# [d]$ % idem
Difference lists in Prolog

• A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list

• \[X, X \] % Represent the empty list

• \[[\], []\] % idem

• \[[a], [a]\] % idem

• \[[a,b,c|X], X\] % Represents \[a,b,c\]

• \[[a,b,c,d], [d]\] % idem
Difference lists in Oz (2)

• When the second list is unbound, an append operation with another difference list takes constant time

• fun \{AppendD D1 D2\}
 S1 # E1 = D1
 S2 # E2 = D2
 in
 E1 = S2
 S1 # E2
 end

• local X Y in \{Browse \{AppendD (1|2|3|X)#X (4|5|Y)#Y\}\} end

• Displays (1|2|3|4|5|Y)#Y
Difference lists in Prolog (2)

• When the second list is unbound, an append operation with another difference list takes constant time

\[
\text{append_dl}(S1,E1, S2,E2, S1,E2) :- E1 = S2.
\]

• \(?- \text{append_dl}([1,2,3|X],X, [4,5|Y],Y, S,E). \)

Displays
\[
X = [4, 5|_G193] \\
Y = _G193 \\
S = [1, 2, 3, 4, 5|_G193] \\
E = _G193 ;
\]
A FIFO queue
with difference lists (1)

• A **FIFO queue** is a sequence of elements with an insert and a delete operation.
 – Insert adds an element to one end and delete removes it from the other end
• Queues can be implemented with lists. If L represents the queue content, then inserting X gives X|L and deleting X gives {ButLast L X} (all elements but the last).
 – **Delete is inefficient**: it takes time proportional to the number of queue elements
• With difference lists we can implement a queue with **constant-time insert and delete operations**
 – The queue content is represented as q(N S E), where N is the number of elements and S#E is a difference list representing the elements
A FIFO queue with difference lists (2)

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end
end

fun {Delete Q X}
 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end
end

fun {EmptyQueue Q}
 case Q of q(N S E) then N==0 end end

- Inserting ‘b’:
 - In: q(1 a|T T)
 - Out: q(2 a|b|U U)
- Deleting X:
 - In: q(2 a|b|U U)
 - Out: q(1 b|U U)
 and X=a
- Difference list allows operations at both ends
- N is needed to keep track of the number of queue elements
Fun \{\text{Flatten } Xs\}
\begin{align*}
\text{case } Xs \\
\quad \text{of } \text{nil} \text{ then nil} \\
\quad [] \ Xp Xr \ \text{andthen } \{\text{IsLeaf } X\} \text{ then} \\
\quad \qquad X \{\text{Flatten } Xr\} \\
\quad [] \ Xp Xr \ \text{andthen } \{\text{Not } \{\text{IsLeaf } X\}\} \text{ then} \\
\quad \qquad \{\text{Append } \{\text{Flatten } X\} \ {\text{Flatten } Xr}\}\end{align*}
end
end

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.:

\{\text{Flatten } [1 \ [2] \ [[3]]]\} = [1 \ 2 \ 3]

Let us replace lists by difference lists and see what happens.
Flatten with difference lists (1)

- Flatten of nil is X#X
- Flatten of a leaf X|Xr is (X|Y1)#Y
 - flatten of Xr is Y1#Y
- Flatten of X|Xr is Y1#Y where
 - flatten of X is Y1#Y2
 - flatten of Xr is Y3#Y
 - equate Y2 and Y3

Here is what it looks like as text
Flatten with difference lists (2)

Here is the new program. It is much more efficient than the first version.

proc {FlattenD Xs Ds}
 case Xs
 of nil then Y in Ds = Y#Y
 [] X|Xr andthen {IsLeaf X} then Y1 Y in
 {FlattenD Xr Y1#Y2}
 Ds = (X|Y1)#Y
 [] X|Xr andthen {IsList X} then Y0 Y1 Y2 in
 Ds = Y0#Y2
 {FlattenD X Y0#Y1}
 {FlattenD Xr Y1#Y2}
 end
end

fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end
Reverse (revisited)

• Here is our recursive reverse:

```lisp
fun {Reverse Xs}
    case Xs
    of nil then nil
       [[] X|Xr then {Append {Reverse Xr} [X]}
    end
end
```

• Rewrite this with difference lists:
 – Reverse of nil is X#X
 – Reverse of X|Xs is Y1#Y, where
 • reverse of Xs is Y1#Y2, and
 • equate Y2 and X|Y
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length.
- Using difference lists in the naive version makes it linear time.
- We use two arguments \(Y_1 \) and \(Y \) instead of \(Y_1\#Y \).
- With a minor change we can make it iterative as well.

```
fun {ReverseD Xs}
    proc {ReverseD Xs Y1 Y}
        case Xs
            of nil then Y1=Y
            [] X|Xr then Y2 in
                {ReverseD Xr Y1 Y2}
                Y2 = X|Y
            end
        end
    end
R in
{ReverseD Xs R nil}
R
end
```
Reverse with difference lists (2)

fun \{ReverseD Xs\}
 proc \{ReverseD Xs Y1 Y\}
 case Xs
 of nil then Y1=Y
 [] X|Xr then
 \{ReverseD Xr Y1 X|Y\}
 end
 end
 end
R in
\{ReverseD Xs R nil\}
R
end
Difference lists: Summary

• Difference lists are a way to represent lists in the declarative model such that **one append operation can be done in constant time**
 – A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
 – The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out

• Difference lists are declarative, yet have **some of the power of destructive assignment**
 – Because of the single-assignment property of dataflow variables

• Difference lists originated from **Prolog** and are used to implement, e.g., definite clause grammar rules for natural language parsing.
Exercises

15. Draw the search trees for Prolog queries:
 - \texttt{append([1,2],[3],L)}.
 - \texttt{append(X,Y,[1,2,3])}.
 - \texttt{append_dl([1,2|X],X,[3|Y],Y,S,E)}.

16. Rewrite the multiple accumulators example in Prolog.
17. VRH Exercise 3.10.11 (page 232)
18. VRH Exercise 3.10.14 (page 232)
19. VRH Exercise 3.10.15 (page 232)