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Mathematical Functions

Take the mathematical function:

fx) =x?

f1s a function that maps integers to integers:

Function \92 _,Z\

Domain Range

We apply the function f to numbers in its domain to obtain a number
in its range, €.g.:

- =4
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Function Composition

Given the mathematical functions:
fx) =x?, g(x) =x+1

f *g is the composition of fand g:
8 (x) =f(g(x)

f*8(x)=flg) =fix+tD) = (x+1)* =x? +2x + 1
g f()=8(fx) =g(x’) =x*+1

Function composition is therefore not commutative. Function
composition can be regarded as a (higher-order) function with the
following type:

*:(Z—=2Z)x(£L—>2Z)—>(Z—Z)
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Lambda Calculus (Church and Kleene 1930°s)

A unified language to manipulate and reason about functions.

Given

fx) =x?

Ax. x?

represents the same f function, except it is anonymous.

To represent the function evaluation f(2) = 4,
we use the following A-calculus syntax:

(Ax.x?2) = 22 =4
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Lambda Calculus Syntax and Semantics

The syntax of a A-calculus expression is as follows:

e = \% variable
| Av.e functional abstraction
| (ee) function application

The semantics of a A-calculus expression is as follows:
(Ax.EM) = E{M/x}

where we choose a fresh x, alpha-renaming the lambda abstraction
if necessary to avoid capturing free variables in M.
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Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) =x+y
of type h:ZxZ—7
We can represent & as h’ of type: h:Z—72—7
Such that

h(x,y) =h’(x)(y) =xty
For example,
h’(2) = g, where g(y) = 2+y

We say that h’is the curried version of h.
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Function Composition in Lambda Calculus

S: Ax.x? (Square)
Ax.x+1 (Increment)

e

C: M. Ag.Ax.(f (g x)) (Function Composition)

Recall semantics rule:

(CS) D) (Ax.EM) = E{M/x}

((AMLAg.Ax.(f (g x) Ax.x?) Ax.x+1)
= (Ag.Ax.(Ax.x? (g x)) Ax.x+1)
= Ax.(Ax.Xx? (Ax.x+1 x))
= Ax.(Ax.x’ x+1)
= Ax.x+1?
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Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

Av.e

we say that free occurrences of variable v in expression e are bound.
All other variable occurrences are said to be free.

E.g.,
Bound Variables Free Variables
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o.-renaming

Alpha renaming is used to prevent capturing free occurrences of
variables when reducing a lambda calculus expression, e.g.,

(Ax.Av.(xy) (y w))
=M.((Yw)y)

This reduction erroneously captures the free occurrence of y.

A correct reduction first renames y to z, (or any other fresh variable)
e.g.,
(Ax.Ay.(x y) (y w)
= (M.Az(x2) (yw)
=Az((yw) 3)

where y remains free.
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Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?

Consider:

Ax.(Ax.x? (Ax.x+1 x))
There are two possible evaluation orders:

Ax.(Ax.x? (Ax.x+1 x))
= Ax.(Ax.x’ x+1)
= Ax.x+1?

and:
Ax.(Ax.x? (Ax.x+1 x))
= Ax.(Ax.x+1 x)?
= Ax.x+1?

Is the final result always the same?
C. Varela

Recall semantics rule:

(Ax.EM) = E{M/x}

Applicative
Order

Normal Order
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Church-Rosser Theorem

If a lambda calculus expression can be evaluated in two different
ways and both ways terminate, both ways will yield the same result.

/' N\
€; €,
\ /

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to
terminate, using normal order will cause termination.
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Order of Evaluation and Termination

Consider:

(Ax.y (Ax.(x x) Ax.(x x)))

Recall semantics rule:

(Ax.EM) = E{M/x}

There are two possible evaluation orders:

(Ax.y (Ao (x x) Ax.(x X)) Apg';gztr“’e
= (Ax.y (Ax.(x x) Ax.(x x)))
and:
(Ax.y (Ax.(x x) Ax.(x x)))

Normal Order

=)

In this example, normal order terminates whereas applicative order
does not.
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Combinators

A lambda calculus expression with no free variables 1s called a
combinator. For example:

I: Ax.x (Identity)

App: M-Ax.(f x) (Application)

C: M-Ag.Ax.(f (g x)) (Composition)

L: (Ax.(x x) Ax.(x x)) (Loop)

Cur: MAXM.((fX)y) (Currying)

Seq: A A (Az.y x) (Sequencing--normal order)
ASeq: Ax.Ap.(y x) (Sequencing--applicative order)

where y denotes a thunk, i.e., a lambda abstraction
wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.
C. Varela
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Combinators in Functional Programming
Languages

Most functional programming languages have a syntactic form for
lambda abstractions. For example the identity combinator:

Ax.x

can be written in Oz as follows:

fun {$ X} X end

and it can be written in Scheme as follows:

(lambda(x) x)
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Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}
fun {$ X}
fun {$ Y}
{F XY}
end
end
end

It takes a function of two arguments, F, and returns its curried
version, €.g.,

{{Curry Plus} 2} 3} =5
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Exercises

20. Lambda Calculus Handout Exercise 1.
21. Lambda Calculus Handout Exercise 2.
22. Lambda Calculus Handout Exercise 5.
23. Lambda Calculus Handout Exercise 6.

C. Varela

16



