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Mathematical Functions 
Take the mathematical function: 

f(x) = x2  

f is a function that maps integers to integers: 

f: Z → Z 

We apply the function f to numbers in its domain to obtain a number 
in its range, e.g.: 

f(-2) = 4 

Function!

Domain! Range!
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Function Composition 
Given the mathematical functions: 

f(x) = x2 ,  g(x) = x+1  

f •g is the composition of f and g: 

f •g (x) = f(g(x)) 

 f • g (x) = f(g(x)) = f(x+1) = (x+1)2 = x2 + 2x + 1  
 g • f (x) = g(f(x)) = g(x2) = x2 + 1  

Function composition is therefore not commutative.  Function 
composition can be regarded as a (higher-order) function with the 
following type: 

   • : (Z → Z) x (Z → Z) → (Z → Z)  
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Lambda Calculus (Church and Kleene 1930’s) 

A unified language to manipulate and reason about functions. 

Given 
f(x) = x2 

λx. x2 
represents the same f function, except it is anonymous. 

To represent the function evaluation f(2) = 4,  
we use the following λ-calculus syntax: 

(λx. x2  2)  ⇒  22 ⇒ 4  
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Lambda Calculus Syntax and Semantics 

The syntax of a λ-calculus expression is as follows: 

 e  ::=  v   variable 
  |  λv.e   functional abstraction 
  |  (e e)   function application 

The semantics of a λ-calculus expression is as follows: 

(λx.E M)  ⇒  E{M/x} 

where we choose a fresh x, alpha-renaming the lambda abstraction 
if necessary to avoid capturing free variables in M. 
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Currying 

The lambda calculus can only represent functions of one variable. 
It turns out that one-variable functions are sufficient to represent 
multiple-variable functions, using a strategy called currying. 

E.g., given the mathematical function:  h(x,y) = x+y  
of type      h: Z x Z→ Z 

We can represent h as h’ of type:   h’: Z→ Z→ Z 
Such that   

   h(x,y) = h’(x)(y) = x+y  
For example,  

   h’(2) = g, where g(y) = 2+y  

We say that h’ is the curried version of h. 
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Function Composition in Lambda Calculus 

S:   λx.x2      (Square) 

I:   λx.x+1    (Increment) 

C:   λf.λg.λx.(f (g x))  (Function Composition) 

((C S) I) 

((λf.λg.λx.(f (g x)) λx.x2) λx.x+1) 
⇒ (λg.λx.(λx.x2 (g x)) λx.x+1) 

⇒ λx.(λx.x2 (λx.x+1 x)) 
⇒ λx.(λx.x2 x+1) 

⇒ λx.x+12 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 
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Free and Bound Variables 

The lambda functional abstraction is the only syntactic construct 
that binds variables.  That is, in an expression of the form: 

λv.e 

we say that free occurrences of variable v in expression e are bound.  
All other variable occurrences are said to be free. 

E.g., 

(λx.λy.(x y) (y w)) 

Free Variables!Bound Variables!
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α-renaming 

Alpha renaming is used to prevent capturing free occurrences of 
variables when reducing a lambda calculus expression, e.g., 

(λx.λy.(x y) (y w)) 
⇒ λy.((y w) y) 

This reduction erroneously captures the free occurrence of y. 

A correct reduction first renames y to z, (or any other fresh variable) 
e.g., 

(λx.λy.(x y) (y w)) 
⇒ (λx.λz.(x z) (y w)) 

⇒ λz.((y w) z) 

where y remains free. 
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Order of Evaluation in the Lambda Calculus 

Does the order of evaluation change the final result? 
Consider: 

λx.(λx.x2 (λx.x+1 x)) 

There are two possible evaluation orders: 

λx.(λx.x2 (λx.x+1 x)) 
⇒ λx.(λx.x2 x+1) 

⇒ λx.x+12 
and: 

λx.(λx.x2 (λx.x+1 x)) 
⇒ λx.(λx.x+1 x)2 

⇒ λx.x+12 

Is the final result always the same? 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order!

Normal Order!
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Church-Rosser Theorem 
If a lambda calculus expression can be evaluated in two different 
ways and both ways terminate, both ways will yield the same result. 

 e 

e1         e2 

e’ 

Also called the diamond or confluence property. 

Furthermore, if there is a way for an expression evaluation to 
terminate, using normal order will cause termination. 
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Order of Evaluation and Termination 

Consider: 
(λx.y (λx.(x x) λx.(x x))) 

There are two possible evaluation orders: 

(λx.y (λx.(x x) λx.(x x)))  
⇒ (λx.y (λx.(x x) λx.(x x))) 

and: 
(λx.y (λx.(x x) λx.(x x)))  

⇒  y 

In this example, normal order terminates whereas applicative order 
does not. 

Recall semantics rule: 

(λx.E M)  ⇒  E{M/x} 

Applicative 
Order!

Normal Order!
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Combinators 

A lambda calculus expression with no free variables is called a 
combinator.  For example: 

I:   λx.x      (Identity) 

App:   λf.λx.(f x)    (Application) 
C:   λf.λg.λx.(f (g x))   (Composition) 

L:   (λx.(x x) λx.(x x))   (Loop) 

Cur:   λf.λx.λy.((f x) y)   (Currying) 

Seq:   λx.λy.(λz.y x)   (Sequencing--normal order) 

ASeq:   λx.λy.(y x)   (Sequencing--applicative order) 

 where y denotes a thunk, i.e., a lambda abstraction  
 wrapping the second expression to evaluate. 

The meaning of a combinator is always the same independently of 
its context. 
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Combinators in Functional Programming 
Languages 

Most functional programming languages have a syntactic form for 
lambda abstractions.  For example the identity combinator: 

λx.x 

can be written in Oz as follows: 

fun {$ X} X end 

and it can be written in Scheme as follows: 

(lambda(x) x) 
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Currying Combinator in Oz 

The currying combinator can be written in Oz as follows: 

fun {$ F} 
 fun {$ X}  
  fun {$ Y}  
   {F X Y} 
  end 
 end 

end 

It takes a function of two arguments, F, and returns its curried 
version, e.g., 

{{{Curry Plus} 2} 3} ⇒ 5 
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Exercises 

20. Lambda Calculus Handout Exercise 1. 
21. Lambda Calculus Handout Exercise 2. 
22. Lambda Calculus Handout Exercise 5. 
23. Lambda Calculus Handout Exercise 6. 


