L.ambda Calculus

alpha-renaming, beta reduction, applicative and
normal evaluation orders, Church-Rosser theorem,
combinators

Carlos Varela
Rennselaer Polytechnic Institute

February 13, 2012

C. Varela

Mathematical Functions

Take the mathematical function:

fx) =x?

f1s a function that maps integers to integers:

Function \92 _,Z\

Domain Range

We apply the function f to numbers in its domain to obtain a number
in its range, €.g.:

- =4

C. Varela

Function Composition

Given the mathematical functions:
fx) =x?, g(x) =x+1

f *g is the composition of fand g:
8 (x) =f(g(x)

f*8(x)=flg) =fix+tD) = (x+1)* =x? +2x + 1
g f()=8(fx) =g(x’) =x*+1

Function composition is therefore not commutative. Function
composition can be regarded as a (higher-order) function with the
following type:

*:(Z—=2Z)x(£L—>2Z)—>(Z—Z)

C. Varela

Lambda Calculus (Church and Kleene 1930°s)

A unified language to manipulate and reason about functions.

Given

fx) =x?

Ax. x?

represents the same f function, except it is anonymous.

To represent the function evaluation f(2) = 4,
we use the following A-calculus syntax:

(Ax.x?2) = 22 =4

C. Varela 4

Lambda Calculus Syntax and Semantics

The syntax of a A-calculus expression is as follows:

e = \% variable
| Av.e functional abstraction
| (ee) function application

The semantics of a A-calculus expression is as follows:
(Ax.EM) = E{M/x}

where we choose a fresh x, alpha-renaming the lambda abstraction
if necessary to avoid capturing free variables in M.

C. Varela

Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) =x+y
of type h:ZxZ—7
We can represent & as h’ of type: h:Z—72—7
Such that

h(x,y) =h’(x)(y) =xty
For example,
h’(2) = g, where g(y) = 2+y

We say that h’is the curried version of h.

C. Varela

Function Composition in Lambda Calculus

S: Ax.x? (Square)
Ax.x+1 (Increment)

e

C: M. Ag.Ax.(f (g x)) (Function Composition)

Recall semantics rule:

(CS) D) (Ax.EM) = E{M/x}

((AMLAg.Ax.(f (g x) Ax.x?) Ax.x+1)
= (Ag.Ax.(Ax.x? (g x)) Ax.x+1)
= Ax.(Ax.Xx? (Ax.x+1 x))
= Ax.(Ax.x’ x+1)
= Ax.x+1?

C. Varela 7

Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

Av.e

we say that free occurrences of variable v in expression e are bound.
All other variable occurrences are said to be free.

E.g.,
Bound Variables Free Variables

C. Varela

o.-renaming

Alpha renaming is used to prevent capturing free occurrences of
variables when reducing a lambda calculus expression, e.g.,

(Ax.Av.(xy) (y w))
=M.((Yw)y)

This reduction erroneously captures the free occurrence of y.

A correct reduction first renames y to z, (or any other fresh variable)
e.g.,
(Ax.Ay.(x y) (y w)
= (M.Az(x2) (yw)
=Az((yw) 3)

where y remains free.
C. Varela

Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?

Consider:

Ax.(Ax.x? (Ax.x+1 x))
There are two possible evaluation orders:

Ax.(Ax.x? (Ax.x+1 x))
= Ax.(Ax.x’ x+1)
= Ax.x+1?

and:
Ax.(Ax.x? (Ax.x+1 x))
= Ax.(Ax.x+1 x)?
= Ax.x+1?

Is the final result always the same?
C. Varela

Recall semantics rule:

(Ax.EM) = E{M/x}

Applicative
Order

Normal Order

10

Church-Rosser Theorem

If a lambda calculus expression can be evaluated in two different
ways and both ways terminate, both ways will yield the same result.

/' N\
€; €,
\ /

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to
terminate, using normal order will cause termination.
C. Varela

11

Order of Evaluation and Termination

Consider:

(Ax.y (Ax.(x x) Ax.(x x)))

Recall semantics rule:

(Ax.EM) = E{M/x}

There are two possible evaluation orders:

(Ax.y (Ao (x x) Ax.(x X)) Apg';gztr“’e
= (Ax.y (Ax.(x x) Ax.(x x)))
and:
(Ax.y (Ax.(x x) Ax.(x x)))

Normal Order

=)

In this example, normal order terminates whereas applicative order
does not.
C. Varela 12

Combinators

A lambda calculus expression with no free variables 1s called a
combinator. For example:

I: Ax.x (Identity)

App: M-Ax.(f x) (Application)

C: M-Ag.Ax.(f (g x)) (Composition)

L: (Ax.(x x) Ax.(x x)) (Loop)

Cur: MAXM.((fX)y) (Currying)

Seq: A A (Az.y x) (Sequencing--normal order)
ASeq: Ax.Ap.(y x) (Sequencing--applicative order)

where y denotes a thunk, i.e., a lambda abstraction
wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.
C. Varela

13

Combinators in Functional Programming
Languages

Most functional programming languages have a syntactic form for
lambda abstractions. For example the identity combinator:

Ax.x

can be written in Oz as follows:

fun {$ X} X end

and it can be written in Scheme as follows:

(lambda(x) x)

C. Varela

14

Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}
fun {$ X}
fun {$ Y}
{F XY}
end
end
end

It takes a function of two arguments, F, and returns its curried
version, €.g.,

{{Curry Plus} 2} 3} =5

C. Varela

15

Exercises

20. Lambda Calculus Handout Exercise 1.
21. Lambda Calculus Handout Exercise 2.
22. Lambda Calculus Handout Exercise 5.
23. Lambda Calculus Handout Exercise 6.

C. Varela

16

