
C. Varela 1

Lambda Calculus
alpha-renaming, beta reduction, applicative and

normal evaluation orders, Church-Rosser theorem,
combinators

Carlos Varela
Rennselaer Polytechnic Institute

February 13, 2012

C. Varela 2

Mathematical Functions
Take the mathematical function:

f(x) = x2

f is a function that maps integers to integers:

f: Z → Z

We apply the function f to numbers in its domain to obtain a number
in its range, e.g.:

f(-2) = 4

Function!

Domain! Range!

C. Varela 3

Function Composition
Given the mathematical functions:

f(x) = x2 , g(x) = x+1

f •g is the composition of f and g:

f •g (x) = f(g(x))

 f • g (x) = f(g(x)) = f(x+1) = (x+1)2 = x2 + 2x + 1
 g • f (x) = g(f(x)) = g(x2) = x2 + 1

Function composition is therefore not commutative. Function
composition can be regarded as a (higher-order) function with the
following type:

 • : (Z → Z) x (Z → Z) → (Z → Z)

C. Varela 4

Lambda Calculus (Church and Kleene 1930’s)

A unified language to manipulate and reason about functions.

Given
f(x) = x2

λx. x2
represents the same f function, except it is anonymous.

To represent the function evaluation f(2) = 4,
we use the following λ-calculus syntax:

(λx. x2 2) ⇒ 22 ⇒ 4

C. Varela 5

Lambda Calculus Syntax and Semantics

The syntax of a λ-calculus expression is as follows:

 e ::= v variable
 | λv.e functional abstraction
 | (e e) function application

The semantics of a λ-calculus expression is as follows:

(λx.E M) ⇒ E{M/x}

where we choose a fresh x, alpha-renaming the lambda abstraction
if necessary to avoid capturing free variables in M.

C. Varela 6

Currying

The lambda calculus can only represent functions of one variable.
It turns out that one-variable functions are sufficient to represent
multiple-variable functions, using a strategy called currying.

E.g., given the mathematical function: h(x,y) = x+y
of type h: Z x Z→ Z

We can represent h as h’ of type: h’: Z→ Z→ Z
Such that

 h(x,y) = h’(x)(y) = x+y
For example,

 h’(2) = g, where g(y) = 2+y

We say that h’ is the curried version of h.

C. Varela 7

Function Composition in Lambda Calculus

S: λx.x2 (Square)

I: λx.x+1 (Increment)

C: λf.λg.λx.(f (g x)) (Function Composition)

((C S) I)

((λf.λg.λx.(f (g x)) λx.x2) λx.x+1)
⇒ (λg.λx.(λx.x2 (g x)) λx.x+1)

⇒ λx.(λx.x2 (λx.x+1 x))
⇒ λx.(λx.x2 x+1)

⇒ λx.x+12

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

C. Varela 8

Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

λv.e

we say that free occurrences of variable v in expression e are bound.
All other variable occurrences are said to be free.

E.g.,

(λx.λy.(x y) (y w))

Free Variables!Bound Variables!

C. Varela 9

α-renaming

Alpha renaming is used to prevent capturing free occurrences of
variables when reducing a lambda calculus expression, e.g.,

(λx.λy.(x y) (y w))
⇒ λy.((y w) y)

This reduction erroneously captures the free occurrence of y.

A correct reduction first renames y to z, (or any other fresh variable)
e.g.,

(λx.λy.(x y) (y w))
⇒ (λx.λz.(x z) (y w))

⇒ λz.((y w) z)

where y remains free.

C. Varela 10

Order of Evaluation in the Lambda Calculus

Does the order of evaluation change the final result?
Consider:

λx.(λx.x2 (λx.x+1 x))

There are two possible evaluation orders:

λx.(λx.x2 (λx.x+1 x))
⇒ λx.(λx.x2 x+1)

⇒ λx.x+12
and:

λx.(λx.x2 (λx.x+1 x))
⇒ λx.(λx.x+1 x)2

⇒ λx.x+12

Is the final result always the same?

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order!

Normal Order!

C. Varela 11

Church-Rosser Theorem
If a lambda calculus expression can be evaluated in two different
ways and both ways terminate, both ways will yield the same result.

 e

e1 e2

e’

Also called the diamond or confluence property.

Furthermore, if there is a way for an expression evaluation to
terminate, using normal order will cause termination.

C. Varela 12

Order of Evaluation and Termination

Consider:
(λx.y (λx.(x x) λx.(x x)))

There are two possible evaluation orders:

(λx.y (λx.(x x) λx.(x x)))
⇒ (λx.y (λx.(x x) λx.(x x)))

and:
(λx.y (λx.(x x) λx.(x x)))

⇒ y

In this example, normal order terminates whereas applicative order
does not.

Recall semantics rule:

(λx.E M) ⇒ E{M/x}

Applicative
Order!

Normal Order!

C. Varela 13

Combinators

A lambda calculus expression with no free variables is called a
combinator. For example:

I: λx.x (Identity)

App: λf.λx.(f x) (Application)
C: λf.λg.λx.(f (g x)) (Composition)

L: (λx.(x x) λx.(x x)) (Loop)

Cur: λf.λx.λy.((f x) y) (Currying)

Seq: λx.λy.(λz.y x) (Sequencing--normal order)

ASeq: λx.λy.(y x) (Sequencing--applicative order)

 where y denotes a thunk, i.e., a lambda abstraction
 wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.

C. Varela 14

Combinators in Functional Programming
Languages

Most functional programming languages have a syntactic form for
lambda abstractions. For example the identity combinator:

λx.x

can be written in Oz as follows:

fun {$ X} X end

and it can be written in Scheme as follows:

(lambda(x) x)

C. Varela 15

Currying Combinator in Oz

The currying combinator can be written in Oz as follows:

fun {$ F}
 fun {$ X}
 fun {$ Y}
 {F X Y}
 end
 end

end

It takes a function of two arguments, F, and returns its curried
version, e.g.,

{{{Curry Plus} 2} 3} ⇒ 5

C. Varela 16

Exercises

20. Lambda Calculus Handout Exercise 1.
21. Lambda Calculus Handout Exercise 2.
22. Lambda Calculus Handout Exercise 5.
23. Lambda Calculus Handout Exercise 6.

