Declarative Computation Model

Kernel language semantics
Basic concepts, the abstract machine (VRH 2.4.1-2.4.2)

Carlos Varela
RPI
March 5, 2012

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
Sequential declarative computation model

- The single assignment store
 - declarative (dataflow) variables
 - partial values (variables and values are also called entities)
- The kernel language syntax
- The kernel language semantics
 - The environment: maps textual variable names (variable identifiers) into entities in the store
 - Interpretation (execution) of the kernel language elements (statements) by the use of an abstract machine
 - Abstract machine consists of an execution stack of statements transforming the store
Kernel language syntax

The following defines the syntax of a statement, \(\langle s \rangle \) denotes a statement

\[
\langle s \rangle ::= \text{skip} \\
\quad \langle x \rangle = \langle y \rangle \\
\quad \langle x \rangle = \langle v \rangle \\
\quad \langle s_1 \rangle \langle s_2 \rangle \\
\quad \text{local} \ \langle x \rangle \text{ in } \langle s_1 \rangle \text{ end} \\
\quad \text{if} \ \langle x \rangle \text{ then } \langle s_1 \rangle \text{ else } \langle s_2 \rangle \text{ end} \\
\quad \{ \langle x \rangle \langle y_1 \rangle \ldots \langle y_n \rangle \} \\
\quad \text{case} \ \langle x \rangle \text{ of } \langle \text{pattern} \rangle \text{ then } \langle s_1 \rangle \text{ else } \langle s_2 \rangle \text{ end}
\]

\[
\langle v \rangle ::= \text{proc} \ {\{ \langle y_1 \rangle \ldots \langle y_n \rangle \}} \langle s_1 \rangle \text{ end} \ | \ ...
\]

\[
\langle \text{pattern} \rangle ::= \ ...
\]
Examples

- local X in $X = 1$ end

- local X Y T Z in
 - $X = 5$
 - $Y = 10$
 - $T = (X \geq Y)$
 - if T then $Z = X$ else $Z = Y$ end
 - {Browse Z}
end

- local S T in
 - S = proc {X Y} $Y = X^X$ end
 - {S 5 T}
 - {Browse T}
end
Procedure abstraction

• Any statement can be abstracted to a procedure by selecting a number of the ’free’ variable identifiers and enclosing the statement into a procedure with the identifiers as parameters

• if $X \geq Y$ then $Z = X$ else $Z = Y$ end

• Abstracting over all variables
 proc {Max X Y Z}
 if $X \geq Y$ then $Z = X$ else $Z = Y$ end
 end

• Abstracting over X and Z
 proc {LowerBound X Z}
 if $X \geq Y$ then $Z = X$ else $Z = Y$ end
 end
Computations (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state.
- A *single assignment store* σ is a set of store variables, a variable may be unbound, bound to a partial value, or bound to a group of other variables.
- An *environment* E is mapping from variable identifiers to variables or values in σ, e.g. $\{X \rightarrow x_1, Y \rightarrow x_2\}$.
- A *semantic statement* is a pair $(\langle s \rangle, E)$ where $\langle s \rangle$ is a statement.
- ST is a stack of semantic statements.
Computation (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state.
- The execution state is a pair \((ST, \sigma)\).
- \(ST\) is a stack of semantic statements.
- A computation is a sequence of execution states \((ST_0, \sigma_0) \rightarrow (ST_1, \sigma_1) \rightarrow (ST_2, \sigma_2) \rightarrow \ldots\).
Semantics

- To execute a program (i.e., a statement) \(\langle s \rangle \) the initial execution state is
 \[
 ([(\langle s \rangle, \emptyset)] , \emptyset)
 \]
- \(ST \) has a single semantic statement \(\langle s \rangle, \emptyset \)
- The environment \(E \) is empty, and the store \(\sigma \) is empty
- \([...] \) denotes the stack
- At each step the first element of \(ST \) is popped and execution proceeds according to the form of the element
- The final execution state (if any) is a state in which \(ST \) is empty
• The semantic statement is
 \((\text{skip}, E)\)
• Continue to next execution step
• The semantic statement is
 (skip, E)

• Continue to next execution step
Sequential composition

- The semantic statement is
 \((\langle s_1 \rangle \langle s_2 \rangle, E)\)
- Push \((\langle s_2 \rangle, E)\) and then push \((\langle s_1 \rangle, E)\) on \(ST\)
- Continue to next execution step

\[
\begin{array}{c}
\langle s_1 \rangle \langle s_2 \rangle, E \\
ST
\end{array} + \sigma
\rightarrow
\begin{array}{c}
\langle s_1 \rangle, E \\
ST
\end{array} + \sigma
\]

\[
\begin{array}{c}
\langle s_2 \rangle, E \\
ST
\end{array}
\]
Calculating with environments

• E is mapping from identifiers to entities (both store variables and values) in the store

• The notation $E(\langle y \rangle)$ retrieves the entity x associated with the identifier $\langle y \rangle$ from the store

• The notation $E + \{ \langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n \}$
 – denotes a new environment E' constructed from E by adding the mappings
 \{\langle y \rangle_1 \rightarrow x_1, \langle y \rangle_2 \rightarrow x_2, \ldots, \langle y \rangle_n \rightarrow x_n \}
 – $E'(\langle z \rangle)$ is x_k if $\langle z \rangle$ is equal to $\langle y \rangle_k$, otherwise $E'(\langle z \rangle)$ is equal to $E(\langle z \rangle)$

• The notation $E|_{\{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n \}}$ denotes the projection of E onto the set \{\langle y \rangle_1, \langle y \rangle_2, \ldots, \langle y \rangle_n \},$ i.e., E restricted to the members of the set
Calculating with environments (2)

- $E = \{X \rightarrow 1, Y \rightarrow [2 \ 3], Z \rightarrow x_i\}$
- $E' = E + \{X \rightarrow 2\}$
- $E'(X) = 2,$
 $E(X) = 1$
- $E|_{\{X,Y\}}$ restricts E to the ’domain’ $\{X,Y\}$,
 i.e., it is equal to $\{X \rightarrow 1, Y \rightarrow [2 \ 3]\}$
Calculating with environments (3)

- local X in
 $X = 1$ \hspace{1cm} (E)

 local X in
 $X = 2$ \hspace{1cm} (E')

 \{Browse X\}

end \hspace{1cm} (E)

\{Browse X\}

end
Lexical scoping

- Free and bound identifier occurrences
- An identifier occurrence is *bound* with respect to a statement \(s \) if it is in the scope of a declaration inside \(s \)
- A variable identifier is declared either by a ‘local’ statement, as a parameter of a procedure, or implicitly declared by a case statement
- An identifier occurrence is *free* otherwise
- In a running program every identifier is bound (i.e., declared)
Lexical scoping (2)

- proc \{P X\}
 local Y in Y = 1 \{Browse Y\} end
 X = Y
end

Free Occurrences Bound Occurrences
Lexical scoping (3)

- `local Arg1 Arg2 in`

 \[
 \begin{align*}
 Arg1 &= 111*111 \\
 Arg2 &= 999*999 \\
 \textbf{Res} &= \text{Arg1}\text{*Arg2}
 \end{align*}
 \]

 `end`

 Free Occurrences

 Bound Occurrences

 This is not a runnable program!
Lexical scoping (4)

- `local` Res `in`

  ```
  local Arg1 Arg2 in
  Arg1 = 111*111
  Arg2 = 999*999
  Res = Arg1*Arg2
  end

  {Browse Res}
  end
  ```
Lexical scoping (5)

```
local P Q in
  proc {P} {Q} end
  proc {Q} {Browse hello} end
local Q in
  proc {Q} {Browse hi} end
  {P}
end
end
```
42. Translate the following function to the kernel language:

```plaintext
fun {AddList L1 L2}
  case L1 of H1|T1 then
    case L2 of H2|T2 then
      H1+H2|{AddList T1 T2}
    end
  end
else nil end
end
```

43. Translate the following function call to the kernel language:

```plaintext
{Browse {Max 5 7}}
```
Exercises

44. Explain the difference between static scoping and dynamic scoping. Give an example program that produces different results with static and dynamic scoping.

45. Think of a reason why static scoping may be preferable to dynamic scoping. Think of a reason why dynamic scoping may be preferable to static scoping.