Announcements
- HW 1 is available on-line through the course website.
- If you have not resolved issues with the C++ environment on your laptop, please do so immediately.
- If you are still having any problems with the homework submission server, please see the instructor ASAP.

Today
- Finish Lecture 1 (STL strings, l-values vs. r-values)
- STL Vectors as “smart arrays”
- Order Notation
- Basic recursion

2.1 Standard Library (STL) Vectors
- Example Motivating Problem: Read an unknown number of grades and compute some basic statistics such as the mean (average), standard deviation, median (middle value), and mode (most frequently occurring value).
- Accomplishing this requires the use of vectors. Why can’t it be done (easily) with C-style arrays?

2.2 STL Vectors: “C++ Arrays”
- Standard library “container class” to hold sequences.
- A vector acts like a dynamically-sized, one-dimensional array.
- Capabilities:
 - Holds objects of any type
 - Starts empty unless otherwise specified
 - Any number of objects may be added to the end — there is no limit on size.
 - It can be treated like an ordinary array using the subscripting operator.
 - A vector knows how many elements it stores! (unlike C arrays)
 - There is NO automatic checking of subscript bounds.
- Here’s how we create an empty vector of integers:
  ```cpp
  vector<int> scores;
  ```
- Vectors are an example of a templated container class. The angle brackets `< >` are used to specify the type of object (the “template type”) that will be stored in the vector.
- `push_back` is a vector function to append a value to the end of the vector, increasing its size by one. This is an \(O(1) \) operation (on average).
 - There is NO corresponding `push_front` operation for vectors.
- `size` is a function defined by the vector type (the vector class) that returns the number of items stored in the vector.
- After vectors are initialized and filled in, they may be treated just like arrays.
 - In the line
    ```cpp
    sum += scores[i];
    ```
 `scores[i]` is an “r-value”, accessing the value stored at location \(i \) of the vector.
 - We could also write statements like
    ```cpp
    scores[4] = 100;
    ```
 to change a score. Here `scores[4]` is an “l-value”, providing the means of storing 100 at location 4 of the vector.
 - It is the job of the programmer to ensure that any subscript value \(i \) that is used is legal — at least 0 and strictly less than `scores.size()`.
2.3 Initializing a Vector — The Use of Constructors

Here are several different ways to initialize a vector:

- This “constructs” an empty vector of integers. Values must be placed in the vector using `push_back`.
  ```cpp
  vector<int> a;
  ```

- This constructs a vector of 100 doubles, each entry storing the value 3.14. New entries can be created using `push_back`, but these will create entries 100, 101, 102, etc.
  ```cpp
  int n = 100;
  vector<double> b(100, 3.14);
  ```

- This constructs a vector of 10,000 ints, but provides no initial values for these integers. Again, new entries can be created for the vector using `push_back`. These will create entries 10000, 10001, etc.
  ```cpp
  vector<int> c(n*n);
  ```

- This constructs a vector that is an exact copy of vector `b`.
  ```cpp
  vector<double> d(b);
  ```

- This is a compiler error because no constructor exists to create an int vector from a double vector. These are different types.
  ```cpp
  vector<int> e(b);
  ```

2.4 Exercises

1. After the above code constructing the three vectors, what will be output by the following statement?

   ```cpp
   cout << a.size() << endl << b.size() << endl << c.size() << endl;
   ```

2. Write code to construct a vector containing 100 doubles, each having the value 55.5.

3. Write code to construct a vector containing 1000 doubles, containing the values 0, 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, etc. Write it two ways, one that uses `push_back` and one that does not use `push_back`.

2.5 Example: Using Vectors to Compute Standard Deviation

Definition: If $a_0, a_1, a_2, \ldots, a_{n-1}$ is a sequence of n values, and μ is the average of these values, then the standard deviation is

\[
\left(\frac{\sum_{i=0}^{n-1} (a_i - \mu)^2}{n-1} \right)^{\frac{1}{2}}
\]

// Compute the average and standard deviation of an input set of grades.
#include <fstream>
#include <iomanip>
#include <iostream>
#include <vector> // to access the STL vector class
#include <cmath> // to use standard math library and sqrt

int main(int argc, char* argv[]) {
 if (argc != 2) {
 std::cerr << "Usage: " << argv[0] << " grades-file\n";
 return 1;
 }
 std::ifstream grades_str(argv[1]);
 if (!grades_str) {
 std::cerr << "Can not open the grades file " << argv[1] << "\n";
 return 1;
 }
 std::vector<int> scores; // Vector to hold the input scores; initially empty.
 int x; // Input variable

Read the scores, appending each to the end of the vector
while (grades_str >> x) { scores.push_back(x); }

// Quit with an error message if too few scores.
if (scores.size() == 0) {
 std::cout << "No scores entered. Please try again!" << std::endl;
 return 1; // program exits with error code = 1
}

// Compute and output the average value.
int sum = 0;
for (unsigned int i = 0; i < scores.size(); ++ i) {
 sum += scores[i];
}
double average = double(sum) / scores.size();
std::cout << "The average of " << scores.size() << " grades is " << std::setprecision(3) << average << std::endl;

// Exercise: compute and output the standard deviation.
double sum_sq_diff = 0.0;
for (unsigned int i=0; i<scores.size(); ++i) {
 double diff = scores[i] - average;
 sum_sq_diff += diff*diff;
}
double std_dev = sqrt(sum_sq_diff / (scores.size()-1));
std::cout << "The standard deviation of " << scores.size() << " grades is " << std::setprecision(3) << std_dev << std::endl;

return 0; // everything ok

2.6 Standard Library Sort Function

- The standard library has a series of algorithms built to apply to container classes.
- The prototypes for these algorithms (actually the functions implementing these algorithms) are in header file algorithm.
- One of the most important of the algorithms is sort.
- It is accessed by providing the beginning and end of the container's interval to sort.
- As an example, the following code reads, sorts and outputs a vector of doubles:

  ```
  double x;
  std::vector<double> a;
  while ( std::cin >> x ) a.push_back(x);
  std::sort( a.begin(), a.end() );
  for ( unsigned int i=0; i<a.size(); ++i )
      std::cout << a[i] << '\n';
  ```

 - a.begin() is an iterator referencing the first location in the vector, while a.end() is an iterator referencing one past the last location in the vector.
 - We will learn much more about iterators in the next few weeks.
 - Every container has iterators: strings have begin() and end() iterators defined on them.
- The ordering of values by std::sort is least to greatest (technically, non-decreasing). We will see ways to change this.

2.7 Example: Computing the Median

The median value of a sequence is less than half of the values in the sequence, and greater than half of the values in the sequence. If \(a_0, a_1, a_2, \ldots, a_{n-1} \) is a sequence of \(n \) values AND if the sequence is sorted such that \(a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_{n-1} \) then the median is

\[
\begin{align*}
\text{median} &= \begin{cases}
 a_{(n-1)/2} & \text{if } n \text{ is odd} \\
 \frac{a_{n/2-1} + a_{n/2}}{2} & \text{if } n \text{ is even}
\end{cases}
\end{align*}
\]
// Compute the median value of an input set of grades.
#include <algorithm>
#include <cmath>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <vector>

void read_scores(std::vector<int> & scores, std::ifstream & grade_str) {
 int x; // input variable
 while (grade_str >> x) {
 scores.push_back(x);
 }
}

void compute_avg_and_std_dev(const std::vector<int>& s, double & avg, double & std_dev) {
 // Compute and output the average value.
 int sum=0;
 for (unsigned int i = 0; i < s.size(); ++i) {
 sum += s[i];
 }
 avg = double(sum) / s.size();

 // Compute the standard deviation
 double sum_sq = 0.0;
 for (unsigned int i=0; i < s.size(); ++i) {
 sum_sq += (s[i]-avg) * (s[i]-avg);
 }
 std_dev = sqrt(sum_sq / (s.size()-1));
}

double compute_median(const std::vector<int> & scores) {
 // Create a copy of the vector
 std::vector<int> scores_to_sort(scores);
 // Sort the values in the vector. By default this is increasing order.
 std::sort(scores_to_sort.begin(), scores_to_sort.end());

 // Now, compute and output the median.
 unsigned int n = scores_to_sort.size();
 if (n%2 == 0) // even number of scores
 return double(scores_to_sort[n/2] + scores_to_sort[n/2-1]) / 2.0;
 else
 return double(scores_to_sort[n/2]); // same as (n-1)/2 because n is odd
}

int main(int argc, char* argv[]) {
 if (argc != 2) {
 std::cerr << "Usage: " << argv[0] << " grades-file\n";
 return 1;
 }
 std::ifstream grades_str(argv[1]);
 if (!grades_str) {
 std::cerr << "Can not open the grades file " << argv[1] << "\n";
 return 1;
 }

 std::vector<int> scores; // Vector to hold the input scores; initially empty.
 read_scores(scores, grades_str); // Read the scores, as before

 // Quit with an error message if too few scores.
 if (scores.size() == 0) {
 std::cout << "No scores entered. Please try again!" << std::endl;
 return 1;
 }
}
// Compute the average, standard deviation and median
double average, std_dev;
compute_avg_and_std_dev(scores, average, std_dev);
double median = compute_median(scores);

// Output
std::cout << "Among " << scores.size() << " grades: \n";
<< " average = " << std::setprecision(3) << average << '\n' << " std_dev = " << std_dev << '\n'
<< " median = " << median << std::endl;
return 0;
}

2.8 Passing Vectors (and Strings) As Parameters

The following outlines rules for passing vectors as parameters. The same rules apply to passing strings.

- If you are passing a vector as a parameter to a function and you want to make a (permanent) change to the
 vector, then you should pass it by reference.
 - This is illustrated by the function read_scores in the program median_grade.
 - This is very different from the behavior of arrays as parameters.
- What if you don’t want to make changes to the vector or don’t want these changes to be permanent?
 - The answer we’ve learned so far is to pass by value.
 - The problem is that the entire vector is copied when this happens! Depending on the size of the vector,
 this can be a considerable waste of memory.
- The solution is to pass by constant reference: pass it by reference, but make it a constant so that it can not
 be changed.
 - This is illustrated by the functions compute_avg_and_std_dev and compute_median in the program
 median_grade.
- As a general rule, you should not pass a container object, such as a vector or a string, by value because of the
 cost of copying.

2.9 Algorithm Analysis

Why should we bother?

- We want to do better than just implementing and testing every idea we have.
- We want to know why one algorithm is better than another.
- We want to know the best we can do. (This is often quite hard.)

How do we do it? There are several options, including:

- Don’t do any analysis; just use the first algorithm you can think of that works.
- Implement and time algorithms to choose the best.
- Analyze algorithms by counting operations while assigning different weights to different types of operations
 based on how long each takes.
- Analyze algorithms by assuming each operation requires the same amount of time. Count the total number of
 operations, and then multiply this count by the average cost of an operation.

2.10 Exercise: Counting Example

- Suppose arr is an array of n doubles. Here is a simple fragment of code to sum of the values in the array:

 double sum = 0;
 for (int i=0; i<n; ++i)
 sum += arr[i];

- What is the total number of operations performed in executing this fragment? Come up with a function
 describing the number of operations in terms of n.
2.11 Exercise: Which Algorithm is Best?

A venture capitalist is trying to decide which of 3 startup companies to invest in and has asked for your help. Here’s the timing data for their prototype software on some different size test cases:

<table>
<thead>
<tr>
<th>n</th>
<th>foo-a</th>
<th>foo-b</th>
<th>foo-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10 u-sec</td>
<td>5 u-sec</td>
<td>1 u-sec</td>
</tr>
<tr>
<td>20</td>
<td>13 u-sec</td>
<td>10 u-sec</td>
<td>8 u-sec</td>
</tr>
<tr>
<td>30</td>
<td>15 u-sec</td>
<td>15 u-sec</td>
<td>27 u-sec</td>
</tr>
<tr>
<td>100</td>
<td>20 u-sec</td>
<td>50 u-sec</td>
<td>1000 u-sec</td>
</tr>
<tr>
<td>1000</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Which company has the “best” algorithm?

2.12 Order Notation Definition

In this course we will focus on the intuition of order notation. This topic will be covered again, in more depth, in later computer science courses.

- **Definition:** Algorithm A is order $f(n)$ — denoted $O(f(n))$ — if constants k and n_0 exist such that A requires no more than $k \times f(n)$ time units (operations) to solve a problem of size $n \geq n_0$.
- For example, algorithms requiring $3n + 2$, $5n - 3$, and $14 + 17n$ operations are all $O(n)$. This is because we can select values for k and n_0 such that the definition above holds. (What values?) Likewise, algorithms requiring $n^2/10 + 15n - 3$ and $10000 + 35n^2$ are all $O(n^2)$.
- Intuitively, we determine the order by finding the *asymptotically dominant term (function of n)* and throwing out the leading constant. This term could involve logarithmic or exponential functions of n. Implications for analysis:
 - We don’t need to quibble about small differences in the numbers of operations.
 - We also do not need to worry about the different costs of different types of operations.
 - We don’t produce an actual time. We just obtain a rough count of the number of operations. This count is used for comparison purposes.
- In practice, this makes analysis relatively simple, quick and (sometimes unfortunately) rough.

2.13 Common Orders of Magnitude

- **$O(1)$, a.k.a. CONSTANT:** The number of operations is independent of the size of the problem. e.g., compute quadratic root.
- **$O(\log n)$, a.k.a. LOGARITHMIC:** e.g., dictionary lookup, binary search.
- **$O(n)$, a.k.a. LINEAR:** e.g., sum up a list.
- **$O(n \log n)$, e.g., sorting.**
- **$O(n^2)$, $O(n^3)$, $O(n^k)$, a.k.a. POLYNOMIAL:** e.g., find closest pair of points.
- **$O(2^n)$, $O(k^n)$, a.k.a. EXPONENTIAL:** e.g., Fibonacci, playing chess.

2.14 Exercise: A Slightly Harder Example

- Here’s an algorithm to determine if the value stored in variable x is also in an array called foo. Can you analyze it? What did you do about the if statement? What did you assume about where the value stored in x occurs in the array (if at all)?

```c
int loc=0;
bool found = false;
while (!found && loc < n) {
    if (x == foo[loc]) found = true;
    else loc++;
}
if (found) cout << "It is there!\n";
```
2.15 Best-Case, Average-Case and Worst-Case Analysis

- For a given fixed size array, we might want to know:
 - The fewest number of operations (best case) that might occur.
 - The average number of operations (average case) that will occur.
 - The maximum number of operations (worst case) that can occur.
- The last is the most common. The first is rarely used.
- On the previous algorithm, the best case is \(O(1)\), but the average case and worst case are both \(O(n)\).

2.16 Approaching An Analysis Problem

- Decide the important variable (or variables) that determine the “size” of the problem. For arrays and other “container classes” this will generally be the number of values stored.
- Decide what to count. The order notation helps us here.
 - If each loop iteration does a fixed (or bounded) amount of work, then we only need to count the number of loop iterations.
 - We might also count specific operations. For example, in the previous exercise, we could count the number of comparisons.
- Do the count and use order notation to describe the result.

2.17 Exercises: Order Notation

For each version below, give an order notation estimate of the number of operations as a function of \(n\):

1. int count=0;
 for (int i=0; i<n; ++i)
 for (int j=0; j<n; ++j)
 ++count;

2. int count=0;
 for (int i=0; i<n; ++i)
 ++count;
 for (int j=0; j<n; ++j)
 ++count;

3. int count=0;
 for (int i=0; i<n; ++i)
 for (int j=i; j<n; ++j)
 ++count;

2.18 Recursive Definitions of Factorials and Integer Exponentiation

- Factorial is defined for non-negative integers as
 \[
 n! = \begin{cases}
 n \cdot (n-1)! & n > 0 \\
 1 & n == 0
 \end{cases}
 \]

- Computing integer powers is defined as:
 \[
 n^p = \begin{cases}
 n \cdot n^{p-1} & p > 0 \\
 1 & p == 0
 \end{cases}
 \]

- These are both examples of recursive definitions.

2.19 Recursive C++ Functions

C++, like other modern programming languages, allows functions to call themselves. This gives a direct method of implementing recursive functions. Here are the recursive implementations of factorial and integer power:

```cpp
int fact(int n) {
    if (n == 0) {
        return 1;
    } else {
        int result = fact(n-1);
        return n * result;
    }
}

int intpow(int n, int p) {
    if (p == 0) {
        return 1;
    } else {
        return n * intpow(n, p-1);
    }
}
```
2.20 The Mechanism of Recursive Function Calls

• For each recursive call (or any function call), a program creates an activation record to keep track of:
 - Completely separate instances of the parameters and local variables for the newly-called function.
 - The location in the calling function code to return to when the newly-called function is complete. (Who asked for this function to be called? Who wants the answer?)
 - Which activation record to return to when the function is done. For recursive functions this can be confusing since there are multiple activation records waiting for an answer from the same function.

• This is illustrated in the following diagram of the call fact(4). Each box is an activation record, the solid lines indicate the function calls, and the dashed lines indicate the returns. Inside of each box we list the parameters and local variables and make notes about the computation.

- This chain of activation records is stored in a special part of program memory called the stack.

2.21 Iteration vs. Recursion

• Each of the above functions could also have been written using a for or while loop, i.e. iteratively. For example, here is an iterative version of factorial:

```cpp
int ifact(int n) {
    int result = 1;
    for (int i=1; i<=n; ++i)
        result = result * i;
    return result;
}
```

• Often writing recursive functions is more natural than writing iterative functions, especially for a first draft of a problem implementation.
• You should learn how to recognize whether an implementation is recursive or iterative, and practice rewriting one version as the other. Note: We’ll see that not all recursive functions can be easily rewritten in iterative form!
• Note: The order notation for the number of operations for the recursive and iterative versions of an algorithm is usually the same. However in C, C++, Java, and some other languages, iterative functions are generally faster than their corresponding recursive functions. This is due to the overhead of the function call mechanism. Compiler optimizations will sometimes (but not always!) reduce the performance hit by automatically eliminating the recursive function calls. This is called tail call optimization.

2.22 Exercises

1. Draw a picture to illustrate the activation records for the function call

 `cout << intpow(4, 4) << endl;`

2. Write an iterative version of intpow.

2.23 Rules for Writing Recursive Functions

Here is an outline of five steps that are useful in writing and debugging recursive functions. Note: You don’t have to do them in exactly this order...

1. Handle the base case(s).
2. Define the problem solution in terms of smaller instances of the problem. Use wishful thinking, i.e., if someone else solves the problem of fact(4) I can extend that solution to solve fact(5). This defines the necessary recursive calls. It is also the hardest part!
3. Figure out what work needs to be done before making the recursive call(s).
4. Figure out what work needs to be done after the recursive call(s) complete(s) to finish the computation. (What are you going to do with the result of the recursive call?)
5. Assume the recursive calls work correctly, but make sure they are progressing toward the base case(s)!