Declarative Programming Techniques
Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

February 7, 2013
Accumulators

- **Accumulator programming** is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.
- Assume that the state S consists of a number of components to be transformed individually:
 \[S = (X,Y,Z,...) \]
- For each predicate P, each state component is made into a pair, the first component is the *input* state and the second component is the output state after P has terminated.
- S is represented as
 \[(X_{in}, X_{out}, Y_{in}, Y_{out}, Z_{in}, Z_{out}, ...) \]
A Trivial Example in Prolog

increment(N0,N) :-
 N is N0 + 1.

square(N0,N) :-
 N is N0 * N0.

inc_square(N0,N) :-
 increment(N0,N1),
 square(N1,N).

increment takes N0 as the input and produces N as the output by adding 1 to N0.

square takes N0 as the input and produces N as the output by multiplying N0 to itself.

inc_square takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **increment**) and passing it as input to **square**. The pairs N0-N1 and N1-N are called *accumulators*.
A Trivial Example in Oz

```
proc {Increment N0 N}
  N = N0 + 1
end

proc {Square N0 N}
  N = N0 * N0
end

proc {IncSquare N0 N}
  N1 in
  {Increment N0 N1}
  {Square N1 N}
end
```

- **Increment** takes N0 as the input and produces N as the output by adding 1 to N0.

- **Square** takes N0 as the input and produces N as the output by multiplying N0 to itself.

- **IncSquare** takes N0 as the input and produces N as the output by using an intermediate variable N1 to carry N0+1 (the output of **Increment**) and passing it as input to **Square**. The pairs N0-N1 and N1-N are called *accumulators*.
Accumulators

• Assume that the state \(S \) consists of a number of components to be transformed individually:
 \[S = (X,Y,Z) \]

• Assume \(P_1 \) to \(P_n \) are procedures in Oz

\[
\begin{align*}
\text{proc} & \{ P \; X_0 \; Y_0 \; Y \; Z_0 \; Z \} \\
& : \\
& \{ P_1 \; X_0 \; X_1 \; Y_0 \; Y_1 \; Z_0 \; Z_1 \} \\
& \{ P_2 \; X_1 \; X_2 \; Y_1 \; Y_2 \; Z_1 \; Z_2 \} \\
& : \\
& \{ P_n \; X_{n-1} \; X \; Y_{n-1} \; Y \; Z_{n-1} \; Z \} \\
\end{align*}
\]

• The procedural syntax is easier to use if there is more than one accumulator
MergeSort Example

• Consider a variant of MergeSort with accumulator
• \texttt{proc \{MergeSort1 N S0 S Xs\}}
 \begin{itemize}
 \item N is an integer,
 \item S0 is an input list to be sorted
 \item S is the remainder of S0 after the first N elements are sorted
 \item Xs is the sorted first N elements of S0
 \end{itemize}
• The pair \((S0, S)\) is an accumulator
• The definition is in a procedural syntax in Oz because it has two outputs \(S\) and \(Xs\)
Example (2)

```plaintext
fun {MergeSort Xs}
    {MergeSort1 {Length Xs} Xs _ Ys}
    Ys
end

proc {MergeSort1 N S0 S Xs}
    if N==0 then S = S0 Xs = nil
    elseif N ==1 then X in X|S = S0 Xs=[X]
    else  \%% N > 1
        local S1 Xs1 Xs2 NL NR in
        NL = N div 2
        NR = N - NL
        {MergeSort1 NL S0 S1 Xs1}
        {MergeSort1 NR S1 S Xs2}
        Xs = {Merge Xs1 Xs2}
    end
end
end
```
MergeSort Example in Prolog

```
mergesort(Xs, Ys) :-
    length(Xs, N),
    mergesort1(N, Xs, _, Ys).

mergesort1(0, S, S, []) :- !.
mergesort1(1, [X|S], S, [X]) :- !.
mergesort1(N, S0, S, Xs) :-
    NL is N // 2,
    NR is N - NL,
    mergesort1(NL, S0, S1, Xs1),
    mergesort1(NR, S1, S, Xs2),
    merge(Xs1, Xs2, Xs).
```
Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: \((1+4)-3\)
- The machine executes the following instructions
 - push(1)
 - push(4)
 - plus
 - push(3)
 - minus

\[
\begin{array}{c}
4 \\
1 \\
\end{array}
\rightarrow
\begin{array}{c}
5 \\
\end{array}
\rightarrow
\begin{array}{c}
3 \\
5 \\
\end{array}
\rightarrow
\begin{array}{c}
2 \\
\end{array}
\]
Multiple accumulators (2)

- Example: \((1 + 4) - 3\)
- The arithmetic expressions are represented as trees:
 \[
 \text{minus(plus(1 4) 3)}
 \]
- Write a procedure that takes arithmetic expressions represented as trees and output a list of stack machine instructions and counts the number of instructions

\[
\text{proc \{} \text{ExprCode Expr Cin Cout Nin Nout} \}\]

- \text{Cin}: initial list of instructions
- \text{Cout}: final list of instructions
- \text{Nin}: initial count
- \text{Nout}: final count
Multiple accumulators (3)

```plaintext
proc {ExprCode Expr C0 C N0 N}
  case Expr
    of plus(Expr1 Expr2) then C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
  [] minus(Expr1 Expr2) then C1 N1 in
    C1 = minus|C0
    N1 = N0 + 1
    {SeqCode [Expr2 Expr1] C1 C N1 N}
  [] I andthen {IsInt I} then
    C = push(I)|C0
    N = N0 + 1
  end
end
```

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Multiple accumulators (4)

```plaintext
proc \{ExprCode Expr C0 C N0 N\}
  case Expr
    of plus(Expr1 Expr2) then C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      \{SeqCode [Expr2 Expr1] C1 C N1 N\}
    [] minus(Expr1 Expr2) then C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      \{SeqCode [Expr2 Expr1] C1 C N1 N\}
    [] I andthen \{IsInt I\} then
      C = push(I)|C0
      N = N0 + 1
    end
  end
end

proc \{SeqCode Es C0 C N0 N\}
  case Es
    of nil then C = C0 N = N0
    [] E|Er then N1 C1 in
      \{ExprCode E C0 C1 N0 N1\}
      \{SeqCode Er C1 C N1 N\}
    end
  end
end
```
proc \{ExprCode Expr C0 C N0 N\}
 case Expr
 of plus(Expr1 Expr2) then
 \{SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N\}
 minus(Expr1 Expr2) then
 \{SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N\}
 \[I andthen \{IsInt I\} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc \{SeqCode Es C0 C N0 N\}
 case Es
 of nil then C = C0 N = N0
 \[E|Er then N1 C1 in
 \{ExprCode E C0 C1 N0 N1\}
 \{SeqCode Er C1 C N1 N\}
 end
end
Functional style (4)

fun {ExprCode Expr t(C0 N0) }
 case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
 [] I andthen {IsInt I} then
 t(push(I)|C0 N0 + 1)
 end
end

df {SeqCode Es T}
 case Es
 of nil then T
 [] E|Er then
 T1 = {ExprCode E T} in
 {SeqCode Er T1}
 end
end
Difference lists in Oz

- A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list.

- \(X \# X \) % Represent the empty list
- \(\text{nil} \# \text{nil} \) % idem
- \([a] \# [a] \) % idem
- \((a|b|c|X) \# X \) % Represents \([a \ b \ c]\)
- \([a \ b \ c \ d] \# [d] \) % idem
Difference lists in Prolog

• A *difference list* is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list

• \(X , X \) % Represent the empty list
• \([] , []\) % idem
• \([a] , [a]\) % idem
• \([a,b,c|X] , X\) % Represents \([a,b,c]\)
• \([a,b,c,d] , [d]\) % idem
Difference lists in Oz (2)

- When the second list is unbound, an append operation with another difference list takes constant time

- **fun** {AppendD D1 D2}

 \[
 \begin{align*}
 S1 \# E1 &= D1 \\
 S2 \# E2 &= D2 \\
 E1 &= S2 \\
 S1 \# E2
 \end{align*}
 \]

- **local** X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end

- Displays (1|2|3|4|5|Y)#Y
Difference lists in Prolog (2)

• When the second list is unbound, an append operation with another difference list takes constant time

```
append_dl(S1,E1, S2,E2, S1,E2)  :-  E1 = S2.
```

• ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays

```
X = [4, 5|_G193]
Y = _G193
S = [1, 2, 3, 4, 5|_G193]
E = _G193 ;
```
A FIFO queue with difference lists (1)

- A **FIFO queue** is a sequence of elements with an insert and a delete operation.
 - Insert adds an element to one end and delete removes it from the other end
- Queues can be implemented with lists. If L represents the queue content, then inserting X gives $X|L$ and deleting X gives $\{\text{ButLast } L \ X\}$ (all elements but the last).
 - Delete is inefficient: it takes time proportional to the number of queue elements
- With difference lists we can implement a queue with constant-time insert and delete operations
 - The queue content is represented as $q(N \ S \ E)$, where N is the number of elements and $S#E$ is a difference list representing the elements
A FIFO queue with difference lists (2)

- Inserting ‘b’:
 - In: q(1 a|T T)
 - Out: q(2 a|b|U U)

- Deleting X:
 - In: q(2 a|b|U U)
 - Out: q(1 b|U U) and X=a

- Difference list allows operations at both ends

- N is needed to keep track of the number of queue elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end
end

fun {Delete Q X}
 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end
end

fun {EmptyQueue Q}
 case Q of q(N S E) then N==0 end end
Flatten (revisited)

fun {Flatten Xs}
 case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.:

{Flatten [1 [2] [[3]]]} = [1 2 3]

Let us replace lists by difference lists and see what happens.
Flatten with difference lists (1)

- Flatten of nil is $X#X$
- Flatten of a leaf $X|Xr$ is $(X|Y1)#Y$
 - flatten of Xr is $Y1#Y$
- Flatten of $X|Xr$ is $Y1#Y$ where
 - flatten of X is $Y1#Y2$
 - flatten of Xr is $Y3#Y$
 - equate $Y2$ and $Y3$
Flatten with difference lists (2)

Here is the new program. It is much more efficient than the first version.

```plaintext
proc {FlattenD Xs Ds}
  case Xs
  of nil then Y in Ds = Y#Y
      [] X|Xr andthen {IsLeaf X} then Y1 Y in
      {FlattenD Xr Y1#Y2}  
      Ds = (X|Y1)#Y
      [] X|Xr andthen {IsList X} then Y0 Y1 Y2 in
      Ds = Y0#Y2  
      {FlattenD X Y0#Y1} 
      {FlattenD Xr Y1#Y2}
  end
end

fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end
```
Reverse (revisited)

• Here is our recursive reverse:

```haskell
fun {Reverse Xs}
  case Xs
  of nil then nil
  [] X|Xr then {Append {Reverse Xr} [X]}
  end
end
```

• Rewrite this with difference lists:
 – Reverse of nil is X#X
 – Reverse of X|Xs is Y1#Y, where
 • reverse of Xs is Y1#Y2, and
 • equate Y2 and X|Y
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length.
- Using difference lists in the naive version makes it linear time.
- We use two arguments \(Y_1 \) and \(Y \) instead of \(Y_1 \# Y \).
- With a minor change we can make it iterative as well.

```fun\{\text{ReverseD}\ Xs\}\nproc\{\text{ReverseD}\ Xs\ Y1\ Y\}\n  case\ Xs\ of\ nil\ then\ Y1=Y\n        [\ X]\ Xr\ then\ Y2\ in\n          \{\text{ReverseD}\ Xr\ Y1\ Y2\}\n          Y2=X\#Y\n        end\n  end\nR\ in\n\{\text{ReverseD}\ Xs\ R\ nil\}\nR\nend```
Reverse with difference lists (2)

```plaintext
fun {ReverseD Xs}
 proc {ReverseD Xs Y1 Y}
 case Xs
 of nil then Y1=Y
 [] X|Xr then
 {ReverseD Xr Y1 X|Y}
 end
 end
 end
R in
 {ReverseD Xs R nil}
R
end
```
Difference lists: Summary

• Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time
  – A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
  – The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out

• Difference lists are declarative, yet have some of the power of destructive assignment
  – Because of the single-assignment property of dataflow variables

• Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.
Exercises

15. Draw the search trees for Prolog queries:
   - `append([1,2],[3],L).
   - `append(X,Y,[1,2,3]).
   - `append_dl([1,2|X],X,[3|Y],Y,S,E).

16. Rewrite the multiple accumulators example in Prolog.
17. VRH Exercise 3.10.11 (page 232)
18. VRH Exercise 3.10.14 (page 232)
19. VRH Exercise 3.10.15 (page 232)