CSCI-1200 Data Structures — Spring 2014
Homework 3 — Resizable Tables

In this assignment you will build a custom data structure named Table. Building this data structure will
give you practice with pointers, dynamic array allocation and deallocation, and writing templated classes.
The implementation of this data structure will involve writing one new class. You are not allowed to use any
of the STL container classes in your implementation or use any additional classes or structs. Please read the
entire handout before beginning your implementation. Also, be sure to review the Lecture 7 notes and our
implementation of the Vec class mimicking STL’s vector.

The Data Structure

The resizable Table class is a simple two-dimensional collection of data values of template type T. Like
ordinary C/C++ arrays, you can get and set individual entries in the 2D grid of data. But additionally,
like the STL vector class, you can dynamically grow or shrink the number of values stored in the table using
the push_back_row, push_back_column, pop_back_row, and pop_back_column functions. Below is a diagram
of the data structure you will implement. In this example T is type char.

rows: 2

cols: 5

values:E [alblcd]e]
—={f[g[h[i[j]

The Table class has 3 member variables: rows and cols, unsigned integers representing the current size
of the Table, and values, an array that stores pointers to each row of the table. Each row of the table is
an array with exactly as many entries as there are columns in the Table. In the above example, a call to
get(1,2) returns ‘h’. The set function takes in 3 arguments: the row and column indices and the new value
for that entry in the table. Attempting to get or set a value outside the bounds of the table is an error.
Your program should check for bad indices, print a warning message to std: :cerr and call exit(1). The
user of the Table class can access the table’s current size by calling numRows and numColumns.

Modifying the Data Structure

The overall dimensions of the Table data structure can be modified with functions similar in syntax to the
STL vector push_back and pop_back functions. The rows and cols variables are updated as needed, all
affected arrays are reallocated to be exactly as big as needed, the data is copied into the new arrays, and
all old replaced arrays are deleted. The push_back row and push_back_column functions take in a single
argument, an STL vector, that contains the data values for the new row or column in the table. For example,
if new_row is a vector of 5 chars: A, B, C, D, and E, then a call to push_back_row(new_row) will result in the
new data structure diagram below left. Note that the top level array of pointers is reallocated, copied, &
deleted, but the existing row data arrays can be reused.

rows: 3

4 la[bc]d]

rows: 3 cols:

cols: 5 values:

values:



http://www.cs.rpi.edu/academics/courses/spring14/ds/lectures/07_vectors.pdf

If the user next calls pop_back_column() on this example each row is shortened by one entry by allocating
new smaller arrays, copying data, and cleaning up the unused memory. This is shown in the figure above
right. The push_back_column and pop_back_row member functions work similarly. It is an error to attempt
to push_back a row or column using a vector of data that is the wrong size (too long or too short). It is
also an error to attempt to pop_back a row if rows==0 or to pop_back a column if cols==0. Your program
should check for these cases and print a message to std: :cerr and call exit (1).

Testing, Debugging, and Printing

We provide a main function that will exercise your data structure; however, the tests are not thorough. Some
of these tests are initially commented out. We recommend you get your class working on the basic tests,
and then uncomment the additional tests as you implement and debug the key functionality of the Table
class. Study the provided test cases to understand what code triggers calls to your Table copy constructor,
assignment operator, and destructor and verify that these functions are working correctly.

It is your responsibility to add additional test cases, including examples where the template class type T is
something other than char. You must also implement a simple print function to help as you debug your
class. Include examples of the use of this function in your new test cases. Your function should work for
Tables containing char, int, and reasonably short strings. The print function does not need to work for
more complex types. Please use the example output as a guide (we will grade this output by hand).

Discuss your testing and debugging strategy in your README.txt file. What tools did you use (gdb/lldb/Visual
Studio debugger, Valgrind/Dr. Memory, std::cout & print, etc.)? How did you thoroughly test the ”corner
cases” of the Table class design and implementation?

Performance Analysis

The data structure for this assignment (intentionally) involves a lot of memory allocation & deallocation.
Certainly it is possible to revise this design for improved performance and efficiency or adapt the data struc-
ture to specific applications. For this assignment, please implement the data structure ezactly as described.

In your README. txt file include the order notation for each of the Table member functions described above:
get, set, numRows, numColumns, push_back _row, push_back_column, pop_back_row, pop_back_column, and
print. You should assume that calling new [] or delete [] on an array will take time proportional to
the number of elements in the array. In your answers use n = the number of rows and m = the number of
columns.

Looking for Memory Leaks

To help verify that your data structure does not contain any memory leaks and that your destructor is
correctly deleting everything, we include a batch test function that repeatedly allocates a Table, performs
many operations, and then deallocates the data structure. To run the batch test case, specify 2 command
line arguments, a file name (small.txt, medium.txt, or large.txt) and the number of times to process that
file. If you don’t have any bugs or memory leaks, this code can be repeated indefinitely with no problems.

On Unix/Linux/OSX, open another terminal/shell and run the top command. While your program is
running, watch the value of “RES” or “RPRVT” (resident memory) for your program. If your program is
leaking memory, that number will continuously increase and your program will eventually crash. Alternately,
on Windows, open the Task Manager (Ctrl-Shift-Esc). Select “View” — “Select Columns” and check the
box next to “Memory Usage”. View the “Processes” tab. Now when your program is running, watch the
value of “Mem Usage” for your program (it may help to sort the programs alphabetically by clicking on the
“Image Name” column). If your program is leaking memory, that number will continuously increase.



Memory Debuggers

We also recommend using a memory debugging tool to find errors. Information on installation and use
of the memory debuggers “Valgrind” (available for Unix/Linux/OSX) and “Dr. Memory” (available for
Linux/Windows) is presented on the course webpage:

http://www.cs.rpi.edu/academics/courses/springl4/ds/memory_debugging.php

The homework submission server is configured to run your code with Valgrind to search for memory problems.
Your program must be memory error free to receive full credit.

Extra Credit

For extra credit, implement versions of the push_back functions that accept a Table as the argument, allowing
multiple rows (or columns) to be added. Also, for extra credit, you may rewrite your Table implementation
to use pointers and pointer arithmetic for access to the internal data arrays instead of the subscripting
operator, [1. Note: We recommend that you fully debug your program using the more intuitive [] accessor
for arrays before switching to pointer arithmetic!

Submission

Do all of your work in a new folder named hw3 inside of your Data Structures homeworks directory. Use
good coding style when you design and implement your program. Be sure to make up new test cases and
don’t forget to comment your code! Please use the provided template README. txt file for any notes you want
the grader to read. You must do this assignment on your own, as described in the “Academic
Integrity for Homework” handout. If you did discuss the problem or error messages, etc. with
anyone, please list their names in your README. txt file. When you are finished please zip up your files
exactly as instructed for the previous assignments and submit it through the course webpage.


http://www.cs.rpi.edu/academics/courses/spring14/ds/memory_debugging.php

