CSCI-1200 Data Structures — Spring 2014
Homework 5 — Linked Train Cars

In this assignment we examine and manipulate a doubly-linked list structure of different types of train cars:
engines, freight cars, passenger cars, dining cars, and sleeping cars. Each engine weighs 150 tons and has
power = 3,000 horsepower, freight cars hold different weights (depending on the contents of the car), and
all other cars weigh 50 tons. Note that a train can have multiple engines that work together to drive the
train, and these engines can be positioned at the front, the back, or even in the middle of the train! Your
task for this assignment is to perform a variety of basic train yard operations to connect, disconnect, and
reconnect cars into trains in preparation for service. Please read through the entire handout before beginning
the assignment.

Train Statistics: Speed and Passenger Comfort

Your first task is to calculate the maximum speed of a specific train (a doubly-linked list of TrainCars) on
a 2% incline. A very clearly-written tutorial for this real-world problem is available here:

http://www.alkrug.vcn.com/rrfacts/hp_te.htm

Overly simplified, the formula for the theoretical maximum relates the overall train weight, the combined
engine horsepower, and the slope incline:
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Let’s look at an example, using the provided ASCII art printout of a TrainCar linked list:

I
---100 101 102 103 104 105
/ ENGINE | | | | | dine | | | | sleep |
-00---00- + —00---00- + —00---00— + —00---00- + —00---00- + —00—-—00-
#cars = 6; total weight = 400; speed on 2J, incline = 70.3; avg distance to dining = 1.3; closest engine to sleeper = 5

Each TrainCar object has a unique ID number displayed in the upper right corner. This number will help
us keep track of specific cars when we edit links between train objects. The unmarked cars are simple
passenger cars. The statistics printed below the ASCII output detail the total number of cars in the train
(including engines), the total weight of the train (in tons), and the calculated maximum speed (in mph)
on a 2% incline. You will also need to calculate the final two numbers measuring the comfort level of the
passengers riding in the train. First, we would like to know how far the occupants of the passenger cars are
from the nearest dining car. Passengers can walk from car to car (forward or backward) in the linked list
structure. However, passengers cannot walk through engine or freight cars. The number calculated is the
average across all passenger cars. In this example, two passenger cars are 1 car length away from a dining
car, and one passenger car is 2 car lengths away. Thus, the average distance to the closest dining car for the
above example is (2% 14 1% 2)/3 = 1.3. Shorter average distance to dining values are more comfortable for
passengers. Finally, we measure the quiet comfort of the passengers in the sleeping cars. Since the engines
are the noisiest part of the train, we would like to know what is the worst case closest distance to an engine
car from any sleeping car in the train. Larger closest engine to sleeper values are more comfortable for the
passengers.

Preparing Multiple Freight Trains

The first interesting algorithm we tackle is shipping a large quantity of freight in multiple trains. You will
write the function ShipFreight that takes in four arguments. The first two arguments are TrainCar pointers:


http://www.alkrug.vcn.com/rrfacts/hp_te.htm

a collection of engines, and a collection of freight cars. The third argument is the required minimum speed
to ship this freight and the fourth argument is the maximum number of cars allowed per train. The function
returns an STL vector of trains — TrainCar pointers that are the head node in a linked list representing a
complete train. Your goal is to ship all of the freight in the fewest number of trains, using the fewest total
number of engines. This is a tricky optimization problem with more than one correct answer. For the core
assignment you must ensure that your trains achieve the minimum speed and maximum car requirements.
For extra credit you can improve the algorithm and argue that your solution is indeed optimal (fastest train
speed and fewest number of engines and trains) for any provided input.

Here is an example of the resulting trains when ShipFreight is called with 10 engines, 25 freight cars, a
train length limit of 12 or fewer cars, and a minimum speed of 60 mph. Only 5 engines were necessary and
the freight is split into 3 trains. The weight (in tons) of each freight car is displayed in the center of the car.

I
---106 116 117 118 119 120 121 122
/ENGINE | 40 | | 4 | I 3 | | e | | 3 | | 3 | | 35 |
-00---00- + —00---00- + —00---00- + -00-—-—-00- + —00---00- + —00-—-—00- + —00---00- + =—00-——00-
#cars = 8, total weight = 435, speed on 2% incline = 64.7

I I
---107 ---108 123 124 125 126 127 128 129 130 131 132
/ ENGINE /ENGINE | 50 | | 8 | | 50 | | 4 | | 40 | | 8 | | 8 | | 4 | | 45 | | 65 |
-00---00- + -00---00- + —00---00- + -00---00- + —00---00- + -00---00- + —00---00- + -00-—--00- + —00---00- + -00--—-00- + —00---00- + —00---00-
#cars = 12, total weight = 895, speed on 2, incline = 62.8
I I
---109 ---110 133 134 135 136 137 138 139 140
/ ENGINE / ENGINE | 75 | | 40 | | 65 | | 65 | | 75 | | 45 | | 95 | I 90 |
—-00---00- + =—00---00- + —00-=-00- + —00---00- + —00-—=-00- + —00---00— + —00-——00- + —00---00— + —00-—-—00- + —00-=-00-
#cars = 10, total weight = 850, speed on 2% incline = 66.2

Managing Train Car Rearrangement

The second significant algorithm you will implement is separating one big train (with two or more engines)
into two smaller but equally fast and comfortable passenger trains. The resulting maximum speed of the two
smaller trains is approximately the same as the original large train. First, we’ll assume the input train has
exactly two engines. Here’s a sample input train:

I I
---141 142 143 144 145 146 147 ---148 149 150 151
/ ENGINE | | | | | dine | | sleep | | sleep | | | / ENGINE | | | dine | | |
—00---00- + —00---00- + —00---00- *+ —-00---00- + —00-—--00- + —00---00- + -00-—--00- + —00---00- + —00-—--00- + —00---00- + —00-—--00-
#cars = 11; total weight = 750; speed on 2} incline = 75.0; avg distance to dining = 1.6; closest engine to sleeper = 2

After calling the Separate function, the original train nodes are split/re-organized into two separate train
linked list chains:

I
---141 142 143 144 145
/ ENGINE | | | | | dine | | sleep |
-00---00- + —00---00- + —00-——-00- + -00---00- + —00-——=00-—
#cars = 5; total weight = 350; speed on 2% incline = 80.4; avg distance to dining = 1.5; closest engine to sleeper = 4

I
—————— 146 ------147 ---148 149 150 151
| sleep | | | / ENGINE | | | dine | | |
-00---00- + =—00---00- + —00---00- * —00---00- + —00---00- + —00-=—00-
#cars = 6; total weight = 400; speed on 2% incline = 70.3; avg distance to dining = inf; closest engine to sleeper = 2

Because the original train in this example had an odd number of non-engine cars, no more speed-equal
separation of cars is possible. Of course not all equal-speed train separations are as simple as cutting one
link. Sometimes multiple links must be cut and cars must be pushed around the yard and re-attached in a
different configuration. Can you visualize those operations?

With physical train cars there is a real cost associated with each link or unlink of a pair of neighboring cars.
There is also a cost associated with pushing cars around the train yard — the yard needs extra length of
track, switches between the tracks, and helper engines and extra staff to complete the operations. We would



like to minimize the number of unlinks, the number of links, and the distance each car must be dragged, but
still achieve the best speed-balanced separation of the original train.

Draw at least three different test cases that are more challenging input to the Separate function. Also draw
the corresponding best resulting output configuration for each test case that minimizes the real physical costs
associated with the operations. IMPORTANT: Bring these drawings to Lab 7 — you will need to
show these drawings as part of the lab checkpoints.

Now tackle the implementation of the Separate function to handle all trains with exactly 2 engines. Your
code should not create any new nodes. Your code should not edit the type of any TrainCar object. We
provide a helper function that counts the number of unlink/link operations and the length of track that
cars must be dragged or shifted to produce a specific separation result. Your first priority is to separate the
original train into two equal (or nearly equal) speed trains. Your second priority is to perform the fewest
link /unlink operations and minimize the length of track that cars must be dragged to complete the separation
task. Note there may be multiple different good solutions to a particular input. And we have not specified
which is more expensive: link/unlink operations or dragging cars. You may choose how to prioritize these
options and justify your choice in your README.txt. Once the code is working for trains with 2 engines,
you can extend it to work for input trains with more than 2 engines.

In the above example, note that after separation the passenger comfort values improved in one train but
worsened in the other train. In fact, the average distance to dining is now “infinite” because the passengers
in car 147 cannot reach the dining car. For extra credit, extend your implementation to produce more
comfortable trains by also targeting smaller values for average distance to dining and larger values for closest
engine to sleeper. Add plenty of test cases to main.cpp to demonstrate the success of your extra credit work.

Provided Framework, Implementation Requirements, Hints, & Suggestions

We provide the “traincar.h” file with the implementation of the TrainCar class and the prototypes of
several key functions that operate on a train, a linked list of TrainCar node objects. You are not allowed
to modify the traincar.h file. You will edit the “traincar_prototypes.h” file to complete several missing
function prototypes. (Part of your task for this homework is to deduce the exact function prototypes.) We
also provide the “traincar.cpp” file with the ASCII art PrintTrain functions and “main.cpp”, which
contains many sample tests of the different functions. You should insert your implementation and test cases
where specified in the “traincar.cpp” and “main.cpp” files.

You should work on the assignment step by step, uncommenting each test case in main.cpp as you work.
Compile, test, and fully debug each step before moving on to the next piece of implementation work. You
should not modify the provided code except where indicated, as we will be compiling and testing your
submitted files with different portions of the solution file. To earn full credit on this homework, your code
must also pass the memory error and memory leak checks of Valgrind/Dr. Memory.

Other than the return value of the ShipFreight function and test cases in main.cpp, you will not use
arrays, STL vectors, STL lists, iterators, or other STL containers in this assignment. Instead, you will be
manipulating the low-level custom TrainCar objects, and the pointers that link TrainCars to each other.

You are encouraged to use simple recursion to implement many of the functions for this homework.
Submission

Use good coding style and detailed comments when you design and implement your program. Please use
the provided template README. txt file for any notes you want the grader to read, including work for extra
credit. You must do this assignment on your own, as described in the “Collaboration Policy & Academic
Integrity”. If you did discuss the problem or error messages, etc. with anyone, please list their names in
your README. txt file. When you are finished please zip up your files exactly as instructed for the previous
assignments and submit it through the course webpage.


http://www.cs.rpi.edu/academics/courses/spring14/ds/academic_integrity.php
http://www.cs.rpi.edu/academics/courses/spring14/ds/academic_integrity.php

