CSCI-1200 Data Structures — Spring 2014
Homework 10 — Multiple Inheritance & Exceptions

For this assignment you will build a class inheritance structure to match the hierarchy of classic geometric
shapes. Your finished program will read lists of 2D point coordinates from a file, determine the shape
described by each list of points, and then output various statistics about the shapes to a file. We will
use a somewhat quirky method to determine the type of each shape. We will pass the list of points to each
specialized shape constructor in turn, and if the constructor doesn’t fail, then we know that that list of points
is in fact that type of shape. Remember, the only way for a constructor to fail is to throw an exception.

Shape Hierarchy

You are required to recognize 17 different shapes: Polygon, Triangle, Quadrilateral, Isosceles Triangle, Right
Triangle, Isosceles Right Triangle, Obtuse Triangle, Isosceles Obtuse Triangle, Equilateral Triangle, Trape-
zoid, Kite, Arrow, Parallelogram, Isosceles Trapezoid, Rectangle, Rhombus, and Square. Note that a partic-
ular shape may be correctly labeled by more than one of these names; e.g., a Square is also a Quadrilateral.

For the first part of the homework you must draw a detailed diagram of the class hierarchy. The diagram
must include all 17 different shapes. You should draw arrows indicating all of the inheritance relationships.
To receive full credit, the diagram should be legible, neat, and well organized, with no messy scribbles or
cross outs, a consistent (up or down) orientation to the edges, and few or no arrow crossings. You do not
need to include any of the member variables or member functions in this diagram. We are just looking for
the high level relationships between class names. You should label the virtual inheritance paths (described
on the next page). Hint: 9 of the inheritance arrows will be labeled virtual.

Important Note: There is some debate about the exact definitions of the relationships of some of these shapes.
One of the more contentious is the definition of an Isosceles Trapezoid. Is a Rectangle an Isosceles Trapezoid?
Is a Rhombus an Isosceles Trapezoid? Some say “no” to both questions, and insist that a Trapezoid has
exactly one pair of parallel edges. Others say “yes” to both, as long as one pair is parallel and the other
pair is equal length, it’s an Isosceles Trapezoid. We will apply the following definition: The two base angles
of an Isosceles Trapezoid must be equal, which means that the shape has bilateral symmetry around the
perpendicular bisector of the base. Thus, a Rectangle is an Isosceles Trapezoid and a Rhombus is not an
Isosceles Trapezoid. Furthermore, we settle a different but similar dispute by declaring, for this homework,
that an Arrow is not a Kite because one diagonal does not bisect the other.

Since many of you will draw this using pen/pencil & paper, this part of the homework is due in hardcopy
to your graduate TA in your normal lab section on Wednesday, April 30th. Even if you choose to
draw the diagram electronically, you are still required to print it out and submit the paper in your normal
lab section. You may not use late days for this portion of the assignment.

Provided Code

We provide code that implements all of the I/O for this homework assignment. The executable expects 2
command line arguments, the names of the input and output files. The input file contains a number of lines
of data. Each line begins with a string name followed by 3 or more 2D coordinate wvertices. The output,
which is written to a file, includes basic data on the 17 different shape classes: how many of the input shapes
are members of each class, and what are the names (in alphabetically sorted order) associated with those
members? Also, the output lists data on the shapes with all equal angles, all equal edges, at least one right
angle, obtuse angle, or acute angle, and which shapes are convex vs. concave.

The provided code includes all of the code to call the constructors of the 17 different classes, generally ordered
from most specific/constrained to least specific. For example, the program will try to create a Square with
the data first, and only if that constructor fails (throws an exception) will the program try to create a
Quadrilateral.



We also include a utilities.h file with a number of simple geometric operations: e.g., calculate the distance
between two points, calculate the angle between two edges, and compare two distances or two angles and
judge if they are sufficiently close to be called “equal”. Remember that you usually don’t want to check
if two floating point numbers are equal; instead, check if the difference is below an appropriate tolerance.
Please look through the provided code before you begin your implementation.

Important Note: You should not modify the provided code.
Your Implementation

Your task for this assignment is to implement the 17 shape classes. You should break up the code into at
least one new .h file and at least one new .cpp file. Some hints about the implementation:

e In our sample solution, only one class has member variables, the base class. The two variables are the
std: :string name and an std: :vector<Point> of the vertices.

e In our sample solution, we have implemented one constructor for each class, with specific arguments:
the name and the vertices. We do not need to define the default constructor, the copy constructor, or
the destructor.

e In organizing your code for this assignment, try to avoid unnecessarily duplicating code. For example,
don’t implement the HasARightAngle function in every class. Instead, allow the derived class to rely
on the implementation of that function in its parent class. Similarly, don’t recalculate measurement
data if you can deduce information from properties of that shape. For example, when a Rectangle is
asked if it HasARightAngle, no calculation is necessary — the answer is guaranteed to be true.

e The inheritance diagram of these shapes includes multiple inheritance. Furthermore, the multiple
inheritance is in the form of the Diamond Problem. That is, Class D multiply inherits from Class B
and Class C, and Class B and Class C each inherit from Class A. Thus when an object of type D is
created, in turn instances of B and C are created, and unfortunately both will try to make their own
instance of A. If two instances of A were allowed, attempts to refer to member variables or member
functions of A would be ambiguous. To solve the problem, we should specify that B virtually inherits
from A and C virtually inherits from A. Furthermore, when we construct an instance of D, in addition
to specifying how to call constructors for B and C, we also explicitly specify the constructor for A.
Note how in the single inheritance example on the right, G only explicitly calls a constructor for F.

class A {
public:
A AO {3 E class E {
. . }; A public:
virtual virtual class B : virtual public A { EO {}
public: };
BO : AO {} class F : public E {
}; public:
B C class C : virtual public A { F FO : EO {3
public: A };
cO : AO {3 class G : public F {
}; public:
class D : public B, public C { GO : FO {3
public: };
D DO : AO, BO, ¢O ¥ G
};

You must do this assignment on your own, as described in the “Academic Integrity for Homework” handout.
If you did discuss the problem or error messages, etc. with anyone, please list their names in your README. txt
file. When you are finished please zip up your folder exactly as instructed for the previous assignments and
submit it through the course webpage.



