
CSCI-1200 Data Structures — Spring 2014
Lab 6 — Iterators & Linked Lists & Reversing Data

This lab explores the use of the STL list class and the use of list iterators.

Checkpoint 1

Write and test a function named reverse_vector that reverses the contents of an STL vector of integers.
For example, if the contents of the vector are in increasing order before the call to reverse_vector, then
they will be in decreasing order afterwards. For this checkpoint, use indexing/subscripting on the vector,
not iterators (or pointers). You may not use a second vector or array.

The trick is to step through the vector one location at a time, swapping values between the first half of the
vector and the second half. As examples, the value at location 0 and the value at location size()-1 must
be swapped, and the value at location 1 and the value at location size()-2 must be swapped.

Write a main function to test the function you have written. The main function should (a) create a vector
of integers, (b) output the contents, (c) pass the vector to the reverse function, and then (d) output the
resulting vector. To help with this, you should write an additional function that prints the size and the
contents of a vector (so you don’t need to keep writing for loops over and over). Your main function should
test special cases of empty vectors and vectors of one or two values. Then you should test “typical” cases.
Be sure to also test somewhat bigger vectors with both an even and an odd number of elements.

To complete this checkpoint, show a TA the completed and correct reverse function and the test main
function, and then show the TA the compilation and correct output.

Checkpoint 2

Write a new version of the reverse function named reverse_list that instead uses iterators to reverse the
contents of an STL list of integers. Add code to the main program to test this. (You can start by copying
much of the code and test cases you wrote for Checkpoint 1).

You may want to use a straightforward concept we did not discuss in lecture: a reverse iterator. A reverse
iterator is designed to step through a list from the back to the front. An example will make the main
properties clear:

list<int> a;

unsigned int i;

for (i=1; i<10; ++i) a.push_back(i*i);

list<int>::reverse_iterator ri;

for(ri = a.rbegin(); ri != a.rend(); ++ri)

cout << *ri << endl;

This code will print out the values 81, 64, 49, . . . , 1, in order, on separate lines. Observe the type for the
reverse iterator, the use of the functions rbegin and rend to provide iterators that delimit the bounds on
the reverse iterator, and the use of the ++ operator to take one step backwards through the list. It is very
important to realize that rbegin and end are NOT the same thing! One of the challenges here will be
determining when to stop (when you’ve reached the halfway point in the list). You may use an integer
counter variable to help you do this.

To complete this checkpoint, show a TA your debugged reverse list function and ask any questions
you have about regular vs. reverse iterators for lists and vectors.

