
CSCI-1200 Data Structures — Spring 2014
Lab 11 — Hash Tables

In this lab, you will experiment with our hash table implementation of a set. The key differences between
the ds set class (based on a binary search tree) and the ds hashset class (based on a hash table, of course),
are the performance of insert/find/erase: O(log n) vs. O(1), and the order that the elements are traversed
using iterators: the set was in order, while the hashset is in no apparent order.

http://www.cs.rpi.edu/academics/courses/spring14/ds/labs/11_hash_tables/ds_hashset.h

http://www.cs.rpi.edu/academics/courses/spring14/ds/labs/11_hash_tables/test_ds_hashset.cpp

Checkpoint 1

For the first part of this checkpoint, implement and test the insert function for the hashset. The insert
function must first determine in which bin the new element belongs (using the hash function), and then insert
the element into that bin but only if it isn’t there already. The insert function returns a pair containing an
iterator pointing at the element, and a bool indicating whether it was successfully inserted (true) or already
there (false).

For the second part of this checkpoint, experiment with the hash function. In the provided code we include
the implementation of a good hash function for strings. Are there any collisions for the small example?
Now write some alternative hash functions. First, create a trivial hash function that is guaranteed to have
many, many collisions. Then, create a hash function that is not terrible, but will unfortunately always place
anagrams (words with the same letters, but rearranged) in the same bin. Test your alternate functions and
be prepared to show the results to your TA.

To complete this checkpoint: Show a TA your debugged implementation of insert and your experimen-
tation with alternative hash functions.

Checkpoint 2

Next, implement and test the begin function, which initializes the iteration through a hashset. Confirm
that the elements in the set are visited in the same order they appear with the print function (which we
have implemented for debugging purposes only).

Finally, implement and test the resize function. This function is automatically called from the insert

function when the set gets “too full”. This function should make a new top level vector structure of the
requested size and copy all the data from the old structure to the new structure. Note that the elements will
likely be shuffled around from the old structure to the new structure.

To complete this checkpoint: Show a TA these additions and the test output.

http://www.cs.rpi.edu/academics/courses/spring14/ds/labs/11_hash_tables/ds_hashset.h
http://www.cs.rpi.edu/academics/courses/spring14/ds/labs/11_hash_tables/test_ds_hashset.cpp

