
CSCI-1200 Data Structures — Spring 2014

Lecture 1 — Introduction to C++, STL, & Strings

Instructor

Professor Barb Cutler
331A Materials Research Center (MRC), x3274
cutler@cs.rpi.edu

Today

• Discussion of Website & Syllabus:
http://www.cs.rpi.edu/academics/courses/spring14/ds/

• Getting Started in C++ & STL, C++ Syntax, STL Strings

1.1 Transitioning from Python to C++ (from CSCI-1100 Computer Science 1)

• Python is a great language to learn the power and flexibility of programming and computational problem
solving. This semester we will work in C++ and study lower level programming concepts, focusing on details
including efficiency and memory usage.

• Outside of this class, when working on large programming projects, you will find it is not uncommon to use
a mix of programming languages and libraries. The individual advantages of Python and C++ (and Java,
and Perl, and C, and UNIX bash scripts, and ...) can be combined into an elegant (or terrifyingly complex)
masterpiece.

• Here are a few excellent references recommended to help you transition from Python to C++:
http://cs.slu.edu/~goldwasser/publications/python2cpp.pdf

http://www4.wittenberg.edu/academics/mathcomp/shelburne/comp255/notes/Python2Cpp.pdf

1.2 A Short C++ Example: Temperature Conversion

/* This program converts a Fahrenheit temperature to a Celsius temperature and decides

if the temperature is above the boiling point or below the freezing point */

#include <iostream>

int main() {

// Request and input a temperature.

std::cout << "Please enter a Fahrenheit temperature: ";

float fahrenheit_temp;

std::cin >> fahrenheit_temp;

// Convert it to Celsius and output it.

float celsius_temp = (fahrenheit_temp - 32) * 5.0 / 9.0;

std::cout << "The equivalent Celsius temperature is " << celsius_temp << " degrees." << std::endl;

// Output a message if the temperature is above boiling or below freezing.

const int BoilingPointC = 100;

const int FreezingPointC = 0;

if (celsius_temp > BoilingPointC)

std::cout << "That is above the boiling point of water.\n";

else if (celsius_temp < FreezingPointC)

std::cout << "That is below the freezing point of water.\n";

return 0; /* normal non-error exit code */

}

1.3 Some Basic C++ Syntax

• Comments are indicated using // for single line comments and /* and */ for multi-line comments.

• #include asks the compiler for parts of the standard library and other code that we wish to use (e.g. the
input/output stream function std::cout).

• int main() is a necessary component of all C++ programs; it returns a value (integer in this case) and it
may have parameters.

• { }: the curly braces indicate to C++ to treat everything between them as a unit.

http://www.cs.rpi.edu/academics/courses/spring14/ds/
http://cs.slu.edu/~goldwasser/publications/python2cpp.pdf
http://www4.wittenberg.edu/academics/mathcomp/shelburne/comp255/notes/Python2Cpp.pdf

1.4 The C++ Standard Library, a.k.a. “STL”

• The standard library contains types and functions that are important extensions to the core C++ language.
We will use the standard library to such a great extent that it will feel like part of the C++ core language.

• I/O streams are the first component of the standard library that we see.

• std is a namespace that contains the standard library.

• std::cout (“console output”) and std::endl (“end line”) are defined in the standard library header file,
iostream

1.5 A few notes on C++ vs. Java

• In Java, everything is an object and everything “inherits” from java.lang.Object. In C++, functions can
exist outside of classes. In particular, the main function is never part of a class.

• Source code file organization in C++ does not need to be related to class organization as it does in Java. On
the other hand, creating one C++ class (when we get to classes) per file is the preferred organization, with the
main function in a separate file on its own or with a few helper functions.

1.6 Compiled Languages vs. Interpreted Languages

• C/C++ is a compiled language, which means your code is processed (compiled & linked) to produce a low-
level machine language executable that can be run on your specific hardware. You must re-compile & re-link
after you edit any of the files – although a smart development environment or Makefile will figure out what
portions need to be recompiled and save some time (especially on large programming projects with many lines
of code and many files). Also, if you move your code to a different computer you will usually need to recompile.
Generally the extra work of compilation produces an efficient and optimized executable that will run fast.

• In contrast, many newer languages including Python, Java, & Perl are interpreted languages, that favor in-
cremental development where you can make changes to your code and immediately run all or some of your
code without waiting for compilation. However, an interpreted program will almost always run slower than a
compiled program.

• These days, the process of compilation is almost instantaneous for simple programs, and in this course we
encourage you to follow the same incremental editing & frequent testing development strategy that is employed
with interpreted languages.

• Finally, many interpreted languages have a Just-In-Time-Compiler (JIT) that can run an interpreted program-
ming language and perform optimization on-the-fly resulting in program performance that rivals optimized
compiled code. Thus, the differences between compiled and interpreted languages are somewhat blurry.

• You will practice the cycle of coding & compilation & testing during Lab 1. You are encouraged to try out
different development environments (code editor & compiler) and quickly settle on one that allows you to be
most productive. Ask the your lab TAs & mentors about their favorite programming environments! The course
website includes many helpful links as well.

• As you see in today’s handout, C++ has more required punctuation than Python, and the syntax is more
restrictive. The compiler will proofread your code in detail and complain about any mistakes you make. Even
long-time C++ programmers make mistakes in syntax, and with practice you will become familiar with the
compiler’s error messages and how to correct your code.

1.7 Variables and Constants

• A variable is an object with a name (a C++ identifier such as fahrenheit_temp or celsius_temp).

• An object is computer memory that has a type.

• A type is a structure to memory and a set of operations.

• For example, a float is an object and each float variable is assigned to 4 bytes of memory, and this memory is
formatted according floating point standards for what represents the exponent and mantissa. There are many
operations defined on floats, including addition, subtraction, etc.

2

• A constant (such as BoilingPointC and FreezingPointC) is an object with a name, but a constant object
may not be changed once it is defined (and initialized). Any operations on the integer type may be applied
to a constant int, except operations that change the value. We’ll see several other uses of the const keyword
in the next few weeks.

• In C++ and Java the programmer must specify the data type when a new variable is declared. The C++
compiler enforces type checking (a.k.a. static typing). In contrast, the programmer does not specify the type
of variables in Python and Perl. These languages are dynamically-typed — the interpreter will deduce the data
type at runtime.

1.8 Expressions, Assignments and Statements

Consider the statement : float celsius_temp = (fahrenheit_temp - 32) * 5.0 / 9.0;

• The calculation on the right hand side of the = is an expression. You should review the definition of C++
arithmetic expressions and operator precedence from any reference textbook. The rules are pretty much the
same in C++ and Java and Python.

• The value of this expression is assigned (stored in the memory location) of the newly created float variable
celsius_temp.

1.9 Conditionals and IF statements

• The general form of an if-else statement is

if (conditional-expression)

statement;

else

statement;

• Each statement may be a single statement, such as the cout statement above, a structured statement, or a
compound statement delimited by {. . .}. Note that in the earlier example, the second if is actually part of the
else clause of the first if.

1.10 Functions and Arguments

• Each function has a sequence of parameters and a return type. The function declaration below has a return
type of int and three parameters, each of type int:

// Returns the Julian day associated with the given month and day of the year.

int julian_day(int month, int day, int year) {

int jday = 0;

for (unsigned int m=1; m<month; ++m) {

jday += DaysInMonth[m];

if (m == 2 && is_leap_year(year)) ++jday; // February 29th

}

jday += day;

return jday;

}

• The order and types of the parameters in the calling function (the main function in this example) must match
the order and types of the parameters in the function prototype.

1.11 for Loops

• Here is the basic form of a for loop:

for (expr1; expr2; expr3)

statement;

– expr1 is the initial expression executed at the start before the loop iterations begin;

– expr2 is the test applied before the beginning of each loop iteration, the loop ends when this expression
evaluates to false or 0;

– expr3 is evaluated at the very end of each iteration;

– statement is the “loop body”

• The for loop example above adds the days in the months 1..month-1, and adds an extra day for February’s
that are in leap years.

3

1.12 Larger Complete Example: Julian Date to Month/Day

// Convert a Julian day in a given year to the associated month and day.

#include <iostream>

const int DaysInMonth[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

// Function prototypes. In general, if function A calls function B, function B

// must be defined "before" A or function B's prototype must be specified before A.

void month_and_day(int julian_day, int year, int & month, int & day);

void output_month_name(int month);

int main() { // The main function handles the I/O.

int julian, year, month, day_in_month;

std::cout << "Please enter two integers giving the Julian date and the year: ";

std::cin >> julian >> year;

month_and_day(julian, year, month, day_in_month);

std::cout << "The date is ";

output_month_name(month);

std::cout << " " << day_in_month << ", " << year << std::endl;

return 0;

}

// Function returns true if the given year is a leap year and returns false otherwise.

bool is_leap_year(int year) {

return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);

}

// Compute the month and day corresponding to the Julian day within the given year.

void month_and_day(int julian_day, int year, int &month, int &day) {

bool month_found = false;

month = 1;

// Subtracting the days in each month from the Julian day, until the

// remaining days is less than or equal to the total days in the month.

while (!month_found) {

int days_this_month = DaysInMonth[month];

if (month == 2 && is_leap_year(year)) // Add one if it is a leap year.

++days_this_month;

if (julian_day <= days_this_month)

month_found = true; // Done!

else {

julian_day -= days_this_month;

++month;

}

}

day = julian_day;

}

void output_month_name(int month) { // Output a string giving the name of the month.

switch (month) {

case 1: std::cout << "January"; break;

case 2: std::cout << "February"; break;

case 3: std::cout << "March"; break;

case 4: std::cout << "April"; break;

case 5: std::cout << "May"; break;

case 6: std::cout << "June"; break;

case 7: std::cout << "July"; break;

case 8: std::cout << "August"; break;

case 9: std::cout << "September"; break;

case 10: std::cout << "October"; break;

case 11: std::cout << "November"; break;

case 12: std::cout << "December"; break;

default: std::cout << "Illegal month";

};

}

4

1.13 C-style Arrays and Constant Arrays

• An array is a fixed-length, consecutive sequence of objects all of the same type. The following declares an array
of 15 double values:

double a[15];

• The values are accessed through subscripting operations. The following code assigns the value 3.14159 to
location i=5 of the array. Here i is the subscript or index.

int i = 5;

a[i] = 3.14159;

• In C/C++, array indexing starts at 0.

• Arrays are fixed size, and each array knows NOTHING about its own size. The programmer must keep track
of the size of each array. (Note: C++ STL has generalization of C-style arrays, called vectors, which do not
have these restrictions.)

• In the statement:

const int DaysInMonth[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

– DaysInMonth is an array of 13 constant integers.

– The list of values within the braces initializes the 13 values of the array, so that DaysInMonth[0] == 0,
DaysInMonth[1]==31, etc.

– The array is global, meaning that it is accessible in all functions within the code (after the line in which
the array is declared). Global constants such as this array are usually fine, whereas global variables are
generally a VERY bad idea.

1.14 Month And Day Function

• A bool variable (which can take on only the values true and false) called month found is used as a flag to
indicate when the loop should end.

• The first parts of the while loop body calculates the number of days in the current month (starting at one for
January), including a special addition of 1 to the number of days for a February (month == 2) in a leap year.

• The second half decides if we’ve found the right month. If not, the number of days in the current month is
subtracted from the remaining Julian days, and the month is incremented.

1.15 Value Parameters and Reference Parameters

Consider the line in the main function that calls month and day:

month_and_day(julian, year, month, day_in_month);

and consider the function prototype:

void month_and_day(int julian_day, int year, int & month, int & day)

Note in particular the & in front of the third and fourth parameters.

• The first two parameters are value parameters.

– These are essentially local variables (in the function) whose initial values are copies of the values of the
corresponding argument in the function call.

– Thus, the value of julian from the main function is used to initialize julian day in function month and day.

– Changes to value parameters do NOT change the corresponding argument in the calling function (main
in this example).

– We’ll see more examples of the importance of value vs. reference parameters as the semester continues.

• The second two parameters are reference parameters, as indicated by the &.

– Reference parameters are just aliases for their corresponding arguments. No new variable are created.

– As a result, changes to reference parameters are changes to the corresponding variables (arguments) in
the calling function.

5

• In general, the “Rules of Thumb” for using value and reference parameters:

– When a function (e.g. is leap year) needs to provide just one result, make that result the return value
of the function and pass other parameters by value.

– When a function needs to provide more than one result (e.g. month and day, these results should be
returned using multiple reference parameters.

1.16 Python Strings vs. C chars vs. C-style Strings vs. C++ STL Strings

• Strings in Python are immutable, and there is no difference between a string and a char in Python. Thus, ’a’
and "a" are both strings in Python, not individual characters. In C++ & Java, single quotes create a character
type (exactly one character) and double quotes create a string of 0, 1, 2, or more characters.

• A “C-style” string is an array of chars that ends with the special char ’\0’. C-style strings (char arrays) can
be edited, and there are a number of helper functions to help with common operations. However...

• The “C++-style” STL string type has a wider array of operations and functions, which are more convenient
and more powerful.

1.17 About STL String Objects

• A string is an object type defined in the standard library to contain a sequence of characters.

• The string type, like all types (including int, double, char, float), defines an interface, which includes
construction (initialization), operations, functions (methods), and even other types(!).

• When an object is created, a special function is run called a “constructor”, whose job it is to initialize the
object. There are several ways of constructing string objects:

– By default to create an empty string: std::string my_string_var;

– With a specified number of instances of a single char: std::string my_string_var2(10, ' ');

– From another string: std::string my_string_var3(my_string_var2);

• The notation my_string_var.size() is a call to a function size that is defined as a member function
of the string class. There is an equivalent member function called length.

• Input to string objects through streams (e.g. reading from the keyboard or a file) includes the following steps:

1. The computer inputs and discards white-space characters, one at a time, until a non-white-space character
is found.

2. A sequence of non-white-space characters is input and stored in the string. This overwrites anything that
was already in the string.

3. Reading stops either at the end of the input or upon reaching the next white-space character (without
reading it in).

• The (overloaded) operator ’+’ is defined on strings. It concatenates two strings to create a third string, without
changing either of the original two strings.

• The assignment operation ’=’ on strings overwrites the current contents of the string.

• The individual characters of a string can be accessed using the subscript operator [] (similar to arrays).

– Subscript 0 corresponds to the first character.

– For example, given std::string a = "Susan";

Then a[0] == 'S' and a[1] == 'u' and a[4] == 'n'.

• Strings define a special type string::size_type, which is the type returned by the string function size()

(and length()).

– The :: notation means that size type is defined within the scope of the string type.

– string::size_type is generally equivalent to unsigned int.

– You will have compiler warnings and potential compatibility problems if you compare an int variable to
a.size().

This seems like a lot to remember. Do I need to memorize this? Where can I find all the details on string objects?

6

1.18 C++ vs. Java

• Standard C++ library std::string objects behave like a combination of Java String and StringBuffer

objects. If you aren’t sure of how a std::string member function (or operator) will behave, check its semantics
or try it on small examples (or both, which is preferable).

• Java objects must be created using new, as in:

String name = new String("Chris");

This is not necessary in C++. The C++ (approximate) equivalent to this example is:

std::string name("Chris");

Note: There is a new operator in C++ and its behavior is somewhat similar to the new operation in Java. We
will study it in a couple weeks.

1.19 Problem: Writing a Name Along a Diagonal

• Let’s write a simple program to read in a name using std::cin and then output a fancier version to std::cout,
written along a diagonal. Here’s how the program should behave:

What is your first name? Sally

S

a

l

l

y

Hint: You will need to use nested for loops OR a single loop and exploit properties of the string class.

#include <iostream>

#include <string>

int main() {

std::cout << "What is your first name? ";

std::string first;

std::cin >> first;

for (int i = 0; i < first.size(); i++) {

for (int j = 0; j < i; j++) {

std::cout << ' ';

}

std::cout << first[i] << std::endl;

}

return 0;

}

1.20 Putting a Frame around the Output

• Next, output the name within a frame of asterisks:

What is your first name? Bob

* *

* B *

* o *

* b *

* *

• For this version, there are two main difficulties:

– Making sure that we can put the characters in the right places on the right lines.

– Getting the asterisks in the right positions and getting the right number of blanks on each line.

• There are often many ways to solve a programming problem. Sometimes you can think of several, while
sometimes you struggle to come up with one.

• When you have finished a problem or when you are thinking about programming examples, it is useful to think
about the core ideas used. If you can abstract and understand these ideas, you can later apply them to other
problems.

7

1.21 Implementation: Framed Diagonal Name

• Let’s solve this problem by thinking about what changes from one line to the next. If we have a “blank line”
string, containing only the beginning and ending asterisks and the spaces between. We will overwrite the
appropriate blank character, output the string, and then replace the blank character (so we are ready for the
next line).

#include <iostream>

#include <string>

int main() {

std::cout << "What is your first name? ";

std::string first;

std::cin >> first;

const std::string star_line(first.size()+4, '*');

const std::string blanks(first.size()+2, ' ');

const std::string empty_line = '*' + blanks + '*';

std::string one_line = empty_line;

std::cout << '\n' << star_line << '\n' << empty_line << std::endl;

// Output the interior of the greeting, one line at a time.

for (unsigned int i = 0; i < first.size(); ++i) {

// Create the output line by overwriting a single character from the

// first name in location i+2. After printing it restore the blank.

one_line[i+2] = first[i];

std::cout << one_line << '\n';

one_line[i+2] = ' ';

}

std::cout << empty_line << '\n' << star_line << std::endl;

return 0;

}

1.22 L-Values and R-Values

• Consider the simple code below. String a becomes "Tim". No big deal, right? Wrong!

string a = "Kim";

string b = "Tom";

a[0] = b[0];

• Let’s look closely at the line: a[0] = b[0]; and think about what happens.

In particular, what is the difference between the use of a[0] on the left hand side of the assignment statement
and b[0] on the right hand side?

• Syntactically, they look the same. But,

– The expression b[0] gets the char value, 'T', from string location 0 in b. This is an r-value.

– The expression a[0] gets a reference to the memory location associated with string location 0 in a. This
is an l-value.

– The assignment operator stores the value in the referenced memory location.

The difference between an r-value and an l-value will be especially significant when we get to writing our own
operators later in the semester

• What’s wrong with this code?

std::string foo = "hello";

foo[2] = 'X';

cout << foo;

'X' = foo[3];

cout << foo;

Your C++ compiler will complain with something like: “non-lvalue in assignment”

8

Important: Please read the following statement thoroughly. If you have any questions, contact the in-
structor or the TAs immediately. Please sign this form and give it to your TA during your first lab section.

CSCI-1200 Data Structures — Spring 2014
Collaboration Policy & Academic Integrity

Academic Integrity for Exams

All exams for this course will be completed individually. Copying, communicating, or using disallowed
materials during an exam is cheating, of course. Students caught cheating on an exam will receive an F in
the course and will be reported to the Dean of Students.

Collaboration Policy for Programming Labs

Collaboration is encouraged during the weekly programming labs. Students are allowed to talk through
and assist each other with these programming exercises. Students may ask for help from each other, the
graduate lab TA, and undergraduate programming mentors. But each student must write up and debug
their own lab solutions on their own laptop and be prepared to present and discuss this work with the TA
to receive credit for each checkpoint.

As a general guideline, students may look over each other’s shoulders at their labmate’s laptop screen
during lab — this is the best way to learn about IDEs, code development strategies, testing, and debugging.
However, looking should not lead to line-by-line copying. Furthermore, each student should retain “control”
of their own keyboard. While being assisted by a classmate or a TA, the student should remain fully
engaged on problem solving and ask plenty of questions. Finally, other than the specific files provided by
the instructor, electronic files or file excerpts should not be shared or copied (by email, text, Dropbox, or
any other means).

Homework Collaboration Policy

Academic integrity is a complicated issue for individual programming assignments, but one we take very
seriously. Students naturally want to work together, and it is clear they learn a great deal by doing
so. Getting help is often the best way to interpret error messages and find bugs, even for experienced
programmers. Furthermore, in-depth discussions about problem solving, algorithms, and code efficiency
are invaluable and make us all better software engineers. In response to this, the following rules will be
enforced for programming assignments:

• Students may read through the homework assignment together and discuss what is asked by the
assignment, examples of program input & expected output, the overall approach to tackling the
assignment, possible high level algorithms to solve the problem, and recent concepts from lecture
that might be helpful in the implementation.

• Students are not allowed to work together in writing code or pseudocode. Detailed algorithms and
implementation must be done individually. Students may not discuss homework code or pseudocode
in detail (line-by-line or loop-by-loop) while it is being written or afterwards. In general, students
should not look at each other’s computer screen (or hand-written or printed assignment design notes)
while working on homework. As a guideline, if an algorithm is too complex to describe orally (without
dictating line-by-line), then sharing that algorithm is disallowed by the homework collaboration
policy.

• Students are allowed to ask each other for help in interpreting error messages and in discussing
strategies for testing and finding bugs. First, ask for help orally, by describing the symptoms of
the problem. For each homework, many students will run into similar problems and after hearing a
general description of a problem, another student might have suggestions for what to try to further
diagnose or fix the issue. If that doesn’t work, and if the compiler error message or flawed output is
particularly lengthy, it is okay to ask another student to briefly look at the computer screen to see
the details of the error message and the corresponding line of code. Please see a TA during office
hours if a more in-depth examination of the code is necessary.

• Students may not share or copy code or pseudocode. Homework files or file excerpts should never be
shared electronically (by email, text, LMS, Dropbox, etc.). Homework solution files from previous
years (either instructor or student solutions) should not be used in any way. Students must not
leave their code (either electronic or printed) in publicly-accessible areas. Students may not share
computers in any way when there is an assignment pending. Each student is responsible for securing
their homework materials using all reasonable precautions. These precautions include: Students
should password lock the screen when they step away from their computer. Homework files should
only be stored on private accounts/computers with strong passwords. Homework printouts should
be stored in a locked drawer/room.

• Students may not show their code or pseudocode to other students as a means of helping them.
Well-meaning homework help or tutoring can turn into a violation of the homework collaboration
policy when stressed with time constraints from other courses and responsibilities. Sometimes good
students who feel sorry for struggling students are tempted to provide them with “just a peek” at
their code. Such “peeks” often turn into extensive copying, despite prior claims of good intentions.

• Students may not receive detailed help on their assignment code or pseudocode from individuals
outside the course. This restriction includes tutors, students from prior terms, friends and family
members, internet resources, etc.

• All collaborators (classmates, TAs, ALAC tutors, upperclassmen, students/instructor via LMS, etc.),
and all of the resources (books, online reference material, etc.) consulted in completing this assign-
ment must be listed in the README.txt file submitted with the assignment.

The above rules are in place for each homework assignment and extends two days after the submission
deadline.

Homework Plagiarism Detection and Academic Dishonesty Penalty

We use an automatic code comparison tool to help spot homework assignments that have been submitted
in violation of these rules. The tool takes all assignments from all sections and all prior terms and compares
them, highlighting regions of the code that are similar. Code submitted by students who followed the rules
produces less than 10% overlap. Code submitted by students who broke the rules may produce anywhere
from about 30% to 100% overlap.

The instructor checks flagged pairs of assignments very carefully, to determine which students may have
violated the rules of collaboration and academic integrity on programming assignments. When it is believed
that an incident of academic dishonesty has occurred, the involved students are contacted and a meeting is
scheduled. All students caught cheating on a programming assignment (both the copier and the provider)
will be punished. The standard punishment for the first offense is a 0 on the assignment and a
letter grade reduction on the final semester grade. Students whose violations are more flagrant will
receive a higher penalty. For example, a student who outright steals another student’s code will receive
an F in the course immediately. Students caught a second time will receive an immediate F, regardless of
circumstances. Each incident will be reported to the Dean of Students.

Academic Dishonesty in the Student Handbook

Refer to the The Rensselaer Handbook of Student Rights and Responsibilities for further discussion of
academic dishonesty. Note that: “Students found in violation of the academic dishonesty policy are
prohibited from dropping the course in order to avoid the academic penalty.”

Number of Students Found in Violation of the Policy

25 Students were found to be in violation of the academic dishonesty policy in Spring 2013. Historically,
5-10% of students are found to be in violation of the academic dishonesty policy each semester.

Name: Section #:

Signature: Date:

2

	Transitioning from Python to C++ (from CSCI-1100 Computer Science 1)
	A Short C++ Example: Temperature Conversion
	Some Basic C++ Syntax
	The C++ Standard Library, a.k.a. ``STL''
	A few notes on C++ vs. Java
	Compiled Languages vs. Interpreted Languages
	Variables and Constants
	Expressions, Assignments and Statements
	Conditionals and IF statements
	Functions and Arguments
	for Loops
	Larger Complete Example: Julian Date to Month/Day
	C-style Arrays and Constant Arrays
	Month And Day Function
	Value Parameters and Reference Parameters
	Python Strings vs. C chars vs. C-style Strings vs. C++ STL Strings
	About STL String Objects
	C++ vs. Java
	 Problem: Writing a Name Along a Diagonal
	Putting a Frame around the Output
	 Implementation: Framed Diagonal Name
	L-Values and R-Values

