
CSCI-1200 Data Structures — Spring 2014

Lecture 5 — Pointers, Arrays, Pointer Arithmetic

Announcements: Test 1 Information

• Test 1 will be held Monday, February 10th, 2014 from 6-7:50pm,
– Lab sections 1-5 and lab sections 7-9 will be in DCC 308.
– Lab sections 6 and 10 will be in DCC 337.

No make-ups will be given except for pre-approved absence or illness, and a written excuse from the Dean of
Students or the Student Experience office or the RPI Health Center will be required.

Contact the professor by email before Friday 2/7 @ 1pm to schedule an alternate exam due to course conflict
or arrange for extra time accommodations.

• Coverage: Lectures 1-6, Labs 1-3, and Homeworks 1-2.

• Closed-book and closed-notes except for 1 sheet of notes on 8.5x11 inch paper (front & back) that may be
handwritten or printed. Computers, cell-phones, calculators, PDAs, music players, etc. are not permitted and
must be turned off and placed under your desk.

• All students must bring their Rensselaer photo ID card.

• Practice problems from previous exams are available on the course website. Solutions to the problems will be
posted on Sunday. The best way to prepare is to completely work through and write out your solution to each
problem, before looking at the answers.

• The exam will involve handwriting code on paper (and other short answer problem solving). Neat legible
handwriting is appreciated. We will somewhat forgiving to minor syntax errors – it will be graded by humans
not computers :)

Review from Last Week

• C++ class syntax, designing classes, classes vs. structs; Passing comparison functions to sort; Non-member
operators.

Today’s Lecture — Pointers and Arrays

Optional Reading: Ford & Topp pp. 219-228; Koenig and Moo, Section 10.1

• Pointers store memory addresses.

• They can be used to access the values stored at their stored memory address.

• They can be incremented, decremented, added and subtracted.

• Dynamic memory is accessed through pointers.

• Pointers are also the primitive mechanism underlying vector iterators, which we have used with std::sort and
will use more extensively throughout the semester.

5.1 Pointer Example

• Consider the following code segment:

float x = 15.5;

float *p; /* equiv: float* p; or float * p; */

p = &x;

*p = 72;

if (x > 20)

cout << "Bigger\n";

else

cout << "Smaller\n";

The output is Bigger

because x == 72.0. What’s going on?

Computer memory

Before *p=72

p

x

After *p=72

p

x 72.015.5

5.2 Pointer Variables and Memory Access

• x is an ordinary float, but p is a pointer that can hold the memory address of a float variable. The difference
is explained in the picture above.

• Every variable is attached to a location in memory. This is where the value of that variable is stored. Hence,
we draw a picture with the variable name next to a box that represents the memory location.

• Each memory location also has an address, which is itself just an index into the giant array that is the computer
memory.

• The value stored in a pointer variable is an address in memory. The statement p = &x; takes the address
of x’s memory location and stores it (the address) in the memory location associated with p.

• Since the value of this address is much less important than the fact that the address is x’s memory location,
we depict the address with an arrow.

• The statement: *p = 72; causes the computer to get the memory location stored at p, then go to that
memory location, and store 72 there. This writes the 72 in x’s location.

Note: *p is an l-value in the above expression.

5.3 Defining Pointer Variables

• In the example below, p, s and t are all pointer variables (pointers, for short), but q is NOT. You need the *
before each variable name.

int * p, q;

float *s, *t;

• There is no initialization of pointer variables in this two-line sequence, so the statement below is dangerous,
and may cause your program to crash! (It won’t crash if the uninitialized value happens to be a legal address.)

*p = 15;

5.4 Operations on Pointers

• The unary (single argument/operand) operator * in the expression *p is the “dereferencing operator”. It means
“follow the pointer” *p can be either an l-value or an r-value, depending on which side of the = it appears on.

• The unary operator & in the expression &x means “take the memory address of.”

• Pointers can be assigned. This just copies memory addresses as though they were values (which they are).
Let’s work through the example below (and draw a picture!). What are the values of x and y at the end?

float x=5, y=9;

float *p = &x, *q = &y;

*p = 17.0;

*q = *p;

q = p;

*q = 13.0;

• Assignments of integers or floats to pointers and assignments mixing pointers of different types are illegal.
Continuing with the above example:

int *r;

r = q; // Illegal: different pointer types;

p = 35.1; // Illegal: float assigned to a pointer

• Comparisons between pointers of the form if (p == q) or if (p != q) are legal and very
useful! Less than and greater than comparisons are also allowed. These are useful only when the pointers are
to locations within an array.

2

5.5 Exercise

• Draw a picture for the following code sequence. What is the output to the screen?

int x = 10, y = 15;

int *a = &x;

cout << x << " " << y << endl;

int *b = &y;

*a = x * *b;

cout << x << " " << y << endl;

int *c = b;

*c = 25;

cout << x << " " << y << endl;

5.6 Null Pointers

• Pointers that don’t (yet) point anywhere useful should be explicitly assigned the value 0, a legal pointer value.

– Most compilers define NULL to be a special pointer equal to 0.

• Comparing a pointer to NULL is very useful. It can be used to indicate whether or not a pointer has a
legal address. (But don’t make the mistake of assuming pointers are automatically initialized to NULL.) For
example,

if (p != NULL)

cout << *p << endl.

tests to see if p is pointing somewhere that appears to be useful before accessing the value stored at that
location.

• Dereferencing a null pointer leads to a memory exception (which causes the program to crash).

5.7 Arrays

• Here’s a quick example to remind you about how to use an array:

const int n = 10;

double a[n];

int i;

for (i=0; i<n; ++i)

a[i] = sqrt(double(i));

• Remember: the size of array a is fixed at compile time. STL vectors act like arrays, but they can grow and
shrink dynamically in response to the demands of the application.

5.8 Stepping through Arrays with Pointers

• Pointers are the iterators for arrays.

• The array code above, can be equivalently rewritten as:

const int n = 10;

double a[n];

double *p;

for (p=a; p<a+n; ++p)

*p = sqrt(p-a);

• The assignment: p = a; takes the address of the start of the array and assigns it to p.

• This illustrates the important fact that the name of an array is in fact a pointer to the start of a block of
memory. We will come back to this several times! We could also write this line as:

p = &a[0];

which means “find the location of a[0] and take its address”.

3

• The test p<a+n checks to see if the value of the pointer (the address) is less than n array locations beyond the
start of the array. We could also have used the test p != a+n

• By incrementing, ++p, we make p point to the next location in the array.

– When we increment a pointer we don’t just add one byte to the address, we add the number of bytes
(sizeof) used to store one object of the specific type of that pointer. Similarly, basic addition/subtraction
is done in multiples of the sizeof.

• In the assignment:

*p = sqrt(p-a)

p-a is the number of array locations between p and the start. This is an integer. The square root of this value
is assigned to *p.

• Here’s a picture to explain this example:

increasing

value

a[4]

a[5]

a[6]

a[7]

a[8]

address

10

double [] a

const int n

double* p

a[2]

a[1]

a[0]

a[3]

a[9]

a[10]

0.00

1.00

1.41

1.73

2.00

2.23

2.45

2.65

2.83

3.00

• Note that there may or may not be unused memory between your array and the other local variables. Similarly,
the order that your local variables appear on the stack is not guaranteed (the compiler may rearrange things
a bit in an attempt to optimize performance or memory usage). A buffer overflow (attempting to access an
illegal array index) may or may not cause an immediate failure – depending on the layout of other critical
program memory.

5.9 Sorting an Array

• Arrays may be sorted using std::sort, just as vectors may. Pointers are used in place of iterators. For
example, if a is an array of doubles and there are n values in the array, then here’s how to sort the values in
the array into increasing order:

std::sort(a, a+n)

5.10 Exercises

For each of the following problems, you may only use pointers and not subscripting:

1. Write code to print the array a backwards, using pointers.

4

2. Write code to print every other value of the array a, again using pointers.

3. Write a function that checks whether the contents of an array of doubles are sorted into increasing order. The
function must accept two arguments: a pointer (to the start of the array), and an integer indicating the size of
the array.

5.11 Character Arrays and String Literals

• In the line below "Hello!" is a string literal and it is also an array of characters (with no associated variable
name).

cout << "Hello!" << endl;

• A char array can be initialized as: char h[] = {'H', 'e', 'l', 'l', 'o', '!', '\0'};

or as: char h[] = "Hello!";

In either case, array h has 7 characters, the last one being the null character.

• The C and C++ languages have many functions for manipulating these “C-style strings”. We don’t study
them much anymore because the standard string library is much more logical and easier to use.

• One place we do use them is in file names and command-line arguments, as you have already seen.

5.12 Conversion Between Standard Strings and C-Style String Literals

• We have been creating standard strings from C-style strings all semester. Here are 2 different examples:

string s1("Hello!");

string s2(h);

where h is as defined above.

• You can obtain the C-style string from a standard string using the member function c_str, as in s1.c_str().

5.13 C Calling Convention

• A calling convention is a standardized method for passing arguments between the caller and the function.
Calling conventions vary between programming languages, compilers, and computer hardware.

• In C on x86 architectures here is a generalization of what happens:

1. The caller puts all the arguments on the stack, in reverse order.

2. The caller puts the address of its code on the stack (the return address).

3. Control is transferred to the callee.

4. The callee puts any local variables on the stack.

5. The callee does its work and puts the return value in a special register (storage location).

6. The callee removes its local variables from the stack.

7. Control is transferred by removing the address of the caller from the stack and going there.

8. The caller removes the arguments from the stack.

• On x86 architectures the addresses on the stack are in descending order. This is not true of all hardware.

5

5.14 Poking around in the Stack & Looking for the C Calling Convention

• Let’s look more closely at an example of where the compiler stores our data. Specifically, let’s print out the
addresses of the local variables inside of a few, and some function parameters:

int foo(int a, int *b) {

int q = a+1;

int r = *b+1;

cout << "address of a = " << &a << endl;

cout << "address of b = " << &b << endl;

cout << "address of q = " << &q << endl;

cout << "address of r = " << &r << endl;

cout << "value at " << &a << " = " << a << endl;

cout << "value at " << &b << " = " << b << endl;

cout << "value at " << b << " = " << *b << endl;

cout << "value at " << &q << " = " << q << endl;

cout << "value at " << &r << " = " << r << endl;

return q*r;

}

int main() {

int x = 5;

int y = 7;

int answer = foo (x, &y);

cout << "address of x = " << &x << endl;

cout << "address of y = " << &y << endl;

cout << "address of answer = " << &answer << endl;

cout << "value at " << &x << " = " << x << endl;

cout << "value at " << &y << " = " << y << endl;

cout << "value at " << &answer << " = " << answer << endl;

}

• Note that one of the function parameters is regular integer, passed by copy. The other parameter is a passed
in as a pointer.

• Note that we can print out data values or pointers – the address is printed as a big integer in hexadecimal
format.

• Let’s look at the program output and reverse engineer
a drawing of the stack:

address of a = 0x23eef0

address of b = 0x23eef4

address of q = 0x23eee4

address of r = 0x23eee0

value at 0x23eef0 = 5

value at 0x23eef4 = 0x23ef10

value at 0x23ef10 = 7

value at 0x23eee4 = 6

value at 0x23eee0 = 8

address of x = 0x23ef14

address of y = 0x23ef10

address of answer = 0x23ef0c

value at 0x23ef14 = 5

value at 0x23ef10 = 7

value at 0x23ef0c = 48

answer=

0x23ef10

48

0x23ef14
0x23ef10
0x23ef0c
0x23ef08
0x23ef04
0x23ef00
0x23eefc
0x23eef8
0x23eef4
0x23eef0
0x23eeec
0x23eee8
0x23eee4
0x23eee0
0x23eedc
0x23eed8

0x23ef18
5
7

5

6
8

y=
x=

b=
a=

q=
r=

6

	Pointer Example
	Pointer Variables and Memory Access
	Defining Pointer Variables
	Operations on Pointers
	Exercise
	Null Pointers
	Arrays
	Stepping through Arrays with Pointers
	Sorting an Array
	Exercises
	Character Arrays and String Literals
	Conversion Between Standard Strings and C-Style String Literals
	C Calling Convention
	Poking around in the Stack & Looking for the C Calling Convention

