
CSCI-1200 Data Structures — Spring 2014

Lecture 7 — Templated Classes & Vector Implementation

Review from Lectures 5 & 6

• Arrays and pointers

• Different types of memory (“automatic”, static, dynamic)

• Dynamic allocation of arrays

• Drawing pictures to explain stack vs. heap memory allocation.

7.1 Today’s Lecture

• Designing our own container classes:

– Mimic the interface of standard library (STL) containers

– Study the design of memory management.

– Move toward eventually designing our own, more sophisticated classes.

• Vector implementation

• Templated classes (including compilation and instantiation of templated classes)

• Copy constructors, assignment operators, and destructors

• Memory Debuggers

Optional Reading: Ford&Topp, Sections 5.3-5.5; Koening & Moo Chapter 11

7.2 Vector Public Interface

• In creating our own version of the STL vector class, we will start by considering the public interface:

public:

// MEMBER FUNCTIONS AND OTHER OPERATORS

T& operator[] (size_type i);

const T& operator[] (size_type i) const;

void push_back(const T& t);

void resize(size_type n, const T& fill_in_value = T());

void clear();

bool empty() const;

size_type size() const;

• To implement our own generic (a.k.a. templated) vector class, we will implement all of these operations,
manipulate the underlying representation, and discuss memory management.

7.3 Templated Class Declarations and Member Function Definitions

• In terms of the layout of the code in vec.h (pages 5 & 6 of the handout), the biggest difference is that this is a
templated class. The keyword template and the template type name must appear before the class declaration:

template <class T> class Vec

• Within the class declaration, T is used as a type and all member functions are said to be “templated over type
T”. In the actual text of the code files, templated member functions are often defined (written) inside the class
declaration.

• The templated functions defined outside the template class declaration must be preceded by the phrase:
template <class T> and then when Vec is referred to it must be as Vec<T> . For example, for member
function create (two versions), we write:

template <class T> void Vec<T>::create(...



7.4 Syntax and Compilation

• Templated classes and templated member functions are not created/compiled/instantiated until they are
needed. Compilation of the class declaration is triggered by a line of the form: Vec<int> v1; with int

replacing T. This also compiles the default constructor for Vec<int> because it is used here. Other member
functions are not compiled unless they are used.

• When a different type is used with Vec, for example in the declaration: Vec<double> z; the template class
declaration is compiled again, this time with double replacing T instead of int. Again, however, only the
member functions used are compiled.

• This is very different from ordinary classes, which are usually compiled separately and all functions are compiled
regardless of whether or not they are needed.

• The templated class declaration and the code for all used member functions must be provided where they
are used. As a result, member functions definitions are often included within the class declaration or defined
outside of the class declaration but still in the .h file. If member function definitions are placed in a separate
.cpp file, this file must be #include-d, just like the .h file, because the compiler needs to see it in order to
generate code. (Normally we don’t #include .cpp files!) See also diagram on page 7 of this handout.

Note: Including function definitions in the .h for ordinary non-templated classes may lead to compilation errors
about functions being “multiply defined”. Some of you have already seen these errors.

7.5 Member Variables

Now, looking inside the Vec<T> class at the member variables:

• m data is a pointer to the start of the array (after it has been allocated). Recall the close relationship between
pointers and arrays.

• m size indicates the number of locations currently in use in the vector. This is exactly what the size()

member function should return,

• m alloc is the total number of slots in the dynamically allocated block of memory.

Drawing pictures, which we will do in class, will help clarify this, especially the distinction between m size and
m alloc.

7.6 Typedefs

• Several types are created through typedef statements in the first public area of Vec. Once created the names
are used as ordinary type names. For example Vec<int>::size type is the return type of the size() function,
defined here as an unsigned int.

7.7 operator[]

• Access to the individual locations of a Vec is provided through operator[]. Syntactically, use of this operator
is translated by the compiler into a call to a function called operator[]. For example, if v is a Vec<int>,
then:

v[i] = 5;

translates into:

v.operator[](i) = 5;

• In most classes there are two versions of operator[]:

– A non-const version returns a reference to m data[i]. This is applied to non-const Vec objects.

– A const version is the one called for const Vec objects. This also returns m data[i], but as a const
reference, so it can not be modified.
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7.8 Default Versions of Assignment Operator and Copy Constructor Are Dangerous!

• Before we write the copy constructor and the assignment operator, we consider what would happen if we didn’t
write them.

• C++ compilers provide default versions of these if they are not provided. These defaults just copy the values
of the member variables, one-by-one. For example, the default copy constructor would look like this:

template <class T>

Vec<T> :: Vec(const Vec<T>& v)

: m_data(v.m_data), m_size(v.m_size), m_alloc(v.m_alloc)

{}

In other words, it would construct each member variable from the corresponding member variable of v. This is
dangerous and incorrect behavior for the Vec class. We don’t want to just copy the m_data pointer. We really
want to create a copy of the entire array! Let’s look at this more closely...

7.9 Exercise

Suppose we used the default version of the assignment operator and copy constructor in our Vec<T> class. What
would be the output of the following program? Assume all of the operations except the copy constructor behave as
they would with a std::vector<double>.

Vec<double> v(4, 0.0);

v[0] = 13.1; v[2] = 3.14;

Vec<double> u(v);

u[2] = 6.5;

u[3] = -4.8;

for (unsigned int i=0; i<4; ++i)

cout << u[i] << " " << v[i] << endl;

Explain why this happens by drawing a picture
of the memory of both u and v.

7.10 Classes With Dynamically Allocated Memory

• For Vec (and other classes with dynamically-allocated memory) to work correctly, each object must do its own
dynamic memory allocation and deallocation. We must be careful to keep the memory of each object instance
separate from all others.

• All dynamically-allocated memory for an object should be released when the object is finished with it or when
the object itself goes out of scope (through what’s called a destructor).

• To prevent the creation and use of default versions of these operations, we must write our own:

– Copy constructor

– Assignment operator

– Destructor

7.11 Copy Constructor

• This constructor must dynamically allocate any memory needed for the object being constructed, copy the
contents of the memory of the passed object to this new memory, and set the values of the various member
variables appropriately.

• Exercise: In our Vec class, the actual copying is done in a private member function called copy. Write the
private member function copy.
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7.12 The “this” pointer

• All class objects have a special pointer defined called this which simply points to the current class object, and
it may not be changed.

• The expression *this is a reference to the class object.

• The this pointer is used in several ways:

– Make it clear when member variables of the current object are being used.

– Check to see when an assignment is self-referencing.

– Return a reference to the current object.

7.13 Assignment Operator

• Assignment operators of the form: v1 = v2;

are translated by the compiler as: v1.operator=(v2);

• Cascaded assignment operators of the form: v1 = v2 = v3;

are translated by the compiler as: v1.operator=(v2.operator=(v3));

• Therefore, the value of the assignment operator (v2 = v3) must be suitable for input to a second assignment
operator. This in turn means the result of an assignment operator ought to be a reference to an object.

• The implementation of an assignment operator usually takes on the same form for every class:

– Do no real work if there is a self-assignment.

– Otherwise, destroy the contents of the current object then copy the passed object, just as done by the
copy constructor. In fact, it often makes sense to write a private helper function used by both the copy
constructor and the assignment operator.

– Return a reference to the (copied) current object, using the this pointer.

7.14 Destructor (the “constructor with a tilde”)

• The destructor is called implicitly when an automatically-allocated object goes out of scope or a dynamically-
allocated object is deleted. It can never be called explicitly!

• The destructor is responsible for deleting the dynamic memory “owned” by the class.

• The syntax of the function definition is a bit weird. The ~ has been used as a logic negation in other contexts.

7.15 Increasing the Size of the Vec

• push_back(T const& x) adds to the end of the array, increasing m size by one T location. But what if the
allocated array is full (m size == m alloc)?

1. Allocate a new, larger array. The best strategy is generally to double the size of the current array. Why?

2. If the array size was originally 0, doubling does nothing. We must be sure that the resulting size is at
least 1.

3. Then we need to copy the contents of the current array.

4. Finally, we must delete current array, make the m data pointer point to the start of the new array, and
adjust the m size and m alloc variables appropriately.

• Only when we are sure there is enough room in the array should we actually add the new object to the back
of the array.

7.16 Exercises

• Finish the definition of Vec::push back.

• Write the Vec::resize function.
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7.17 Vec Declaration & Implementation (vec.h)

#ifndef Vec_h_

#define Vec_h_

// Simple implementation of the vector class, revised from Koenig and Moo. This

// class is implemented using a dynamically allocated array (of templated type T).

// We ensure that that m_size is always <= m_alloc and when a push_back or resize

// call would violate this condition, the data is copied to a larger array.

template <class T> class Vec {

public:

// TYPEDEFS

typedef unsigned int size_type;

// CONSTRUCTORS, ASSIGNMNENT OPERATOR, & DESTRUCTOR

Vec() { this->create(); }

Vec(size_type n, const T& t = T()) { this->create(n, t); }

Vec(const Vec& v) { copy(v); }

Vec& operator=(const Vec& v);

~Vec() { delete [] m_data; }

// MEMBER FUNCTIONS AND OTHER OPERATORS

T& operator[] (size_type i) { return m_data[i]; }

const T& operator[] (size_type i) const { return m_data[i]; }

void push_back(const T& t);

void resize(size_type n, const T& fill_in_value = T());

void clear() { delete [] m_data; create(); }

bool empty() const { return m_size == 0; }

size_type size() const { return m_size; }

private:

// PRIVATE MEMBER FUNCTIONS

void create();

void create(size_type n, const T& val);

void copy(const Vec<T>& v);

// REPRESENTATION

T* m_data; // Pointer to first location in the allocated array

size_type m_size; // Number of elements stored in the vector

size_type m_alloc; // Number of array locations allocated, m_size <= m_alloc

};

// Create an empty vector (null pointers everywhere).

template <class T> void Vec<T>::create() {

m_data = NULL;

m_size = m_alloc = 0; // No memory allocated yet

}

// Create a vector with size n, each location having the given value

template <class T> void Vec<T>::create(size_type n, const T& val) {

m_data = new T[n];

m_size = m_alloc = n;

for (size_type i = 0; i < m_size; i++) {

m_data[i] = val;

}

}

// Assign one vector to another, avoiding duplicate copying.

template <class T> Vec<T>& Vec<T>::operator=(const Vec<T>& v) {

if (this != &v) {

delete [] m_data;

this -> copy(v);

}

return *this;

}
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// Create the vector as a copy of the given vector.

template <class T> void Vec<T>::copy(const Vec<T>& v) {

}

// Add an element to the end, resize if necesssary.

template <class T> void Vec<T>::push_back(const T& val) {

if (m_size == m_alloc) {

// Allocate a larger array, and copy the old values

}

// Add the value at the last location and increment the bound

m_data[m_size] = val;

++ m_size;

}

// If n is less than or equal to the current size, just change the size. If n is

// greater than the current size, the new slots must be filled in with the given value.

// Re-allocation should occur only if necessary. push_back should not be used.

template <class T> void Vec<T>::resize(size_type n, const T& fill_in_value) {

}

#endif

7.18 File Organization & Compilation of Templated Classes

The diagram on the next page shows the typical and suggested file organization for non-templated vs. templated
classes. Common mistakes and the resulting compilation errors are noted.
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7.19 Valgrind Memory Checker

We recommend the memory debugging tool “Valgrind”, http://valgrind.org/, which is available for Linux,
FreeBSD, and MacOSX. (Unfortunately, Valgrind is not available for Windows or Cygwin. But you can use Dr.
Memory, which is described in the next section.) Valgrind’s Memcheck tool can detect the following problems:

• Use of uninitialized memory

• Reading/writing memory after it has been free’d

• Reading/writing off the end of malloc’d blocks

• Reading/writing inappropriate areas on the stack

• Memory leaks - where pointers to malloc’d blocks are lost forever

• Mismatched use of malloc/new/new [] vs free/delete/delete []

• Overlapping src and dst pointers in memcpy() and related functions

For HW3, the homework submission server is configured to run your code with Valgrind to search for memory
problems and present the output with the submission results.

7.20 Sample Buggy Program

Can you see the errors in this program?

1 #include <iostream>

2

3 int main() {

4

5 int *p = new int;

6 if (*p != 10) std::cout << "hi" << std::endl;

7

8 int *a = new int[3];

9 a[3] = 12;

10 delete a;

11

12 }

7.21 Using Valgrind

To use Valgrind, you should compile your program with debugging options (-g) enabled:

g++ -g valgrind_test.cpp -o a.out

Then, you run your program as usual, with the addition of valgrind and the memory leak checking options to the
front of the command line.

valgrind --leak-check=yes --show-reachable=yes a.out

And this is what Valgrind has to say about the errors:

==85391== Memcheck, a memory error detector for x86-linux.

==85391== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward.

==85391== Using valgrind-2.1.0.352, a program supervision framework for x86-linux.

==85391== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward.

==85391== Estimated CPU clock rate is 1694 MHz

==85391== For more details, rerun with: -v

==85391==

==85391== Conditional jump or move depends on uninitialised value(s)

==85391== at 0x8048A2A: main (valgrind_test.cpp:6)

hi
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==85391==

==85391== Invalid write of size 4

==85391== at 0x8048A68: main (valgrind_test.cpp:9)

==85391== Address 0x3C231094 is 0 bytes after a block of size 12 alloc'd

==85391== at 0x3C03847B: operator new[](unsigned) (in /software/valgrind-2.1.0.352-0/pkg/lib/valgrind/vgpreload_memcheck.so)

==85391== by 0x8048A5B: main (valgrind_test.cpp:8)

==85391==

==85391== Mismatched free() / delete / delete []

==85391== at 0x3C0386F7: operator delete(void*) (in /software/valgrind-2.1.0.352-0/pkg/lib/valgrind/vgpreload_memcheck.so)

==85391== by 0x8048A78: main (valgrind_test.cpp:10)

==85391== Address 0x3C231088 is 0 bytes inside a block of size 12 alloc'd

==85391== at 0x3C03847B: operator new[](unsigned) (in /software/valgrind-2.1.0.352-0/pkg/lib/valgrind/vgpreload_memcheck.so)

==85391== by 0x8048A5B: main (valgrind_test.cpp:8)

==85391==

==85391== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 0 from 0)

==85391== malloc/free: in use at exit: 4100 bytes in 2 blocks.

==85391== malloc/free: 3 allocs, 1 frees, 4112 bytes allocated.

==85391== For counts of detected errors, rerun with: -v

==85391== searching for pointers to 2 not-freed blocks.

==85391== checked 2398936 bytes.

==85391==

==85391==

==85391== 4 bytes in 1 blocks are definitely lost in loss record 1 of 2

==85391== at 0x3C038253: operator new(unsigned) (in /software/valgrind-2.1.0.352-0/pkg/lib/valgrind/vgpreload_memcheck.so)

==85391== by 0x8048A1D: main (valgrind_test.cpp:5)

==85391==

==85391== LEAK SUMMARY:

==85391== definitely lost: 4 bytes in 1 blocks.

==85391== possibly lost: 0 bytes in 0 blocks.

==85391== still reachable: 0 bytes in 0 blocks.

==85391== suppressed: 4096 bytes in 1 blocks.

Important Note: When Valgrind finds a memory leak, it points to the line of code where this memory was allocated.
Valgrind does not understand the program logic and thus obviously cannot tell us where it should be deleted.

And here’s what it looks like after fixing those bugs:

==85444== Memcheck, a memory error detector for x86-linux.

==85444== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward.

==85444== Using valgrind-2.1.0.352, a program supervision framework for x86-linux.

==85444== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward.

==85444== Estimated CPU clock rate is 1696 MHz

==85444== For more details, rerun with: -v

==85444==

hi

==85444==

==85444== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

==85444== malloc/free: in use at exit: 4096 bytes in 1 blocks.

==85444== malloc/free: 3 allocs, 2 frees, 4112 bytes allocated.

==85444== For counts of detected errors, rerun with: -v

==85444== searching for pointers to 1 not-freed blocks.

==85444== checked 2398936 bytes.

==85444==

==85444== LEAK SUMMARY:

==85444== definitely lost: 0 bytes in 0 blocks.

==85444== possibly lost: 0 bytes in 0 blocks.

==85444== still reachable: 0 bytes in 0 blocks.

==85444== suppressed: 4096 bytes in 1 blocks.

Note that because the STL string class uses its own allocator, there may be a warning about memory that is “still
reachable” even though you’ve deleted all your dynamically allocated memory. The newest version of Valgrind
automatically suppresses this specific error, so you will see this listed as a “suppressed leak”.
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7.22 Dr. Memory

On Windows, we recommend the “Dr. Memory” memory debugging tool, which detects the same classes of errors
as Valgrind. Dr. Memory is also available on Linux.

http://www.drmemory.org

Dr. Memory will work with executables compiled with either the Visual Studio compiler or the MinGW g++ compiler
(which can be run from the Cygwin shell). Unfortunately, because the Cygwin g++ compiler automatically adds the
Cygwin libraries to your executable, you cannot use Dr. Memory with executables compiled with the Cygwin g++
compiler. Detailed instructions for Dr. Memory installation and various compilation instructions are available here:

http://www.cs.rpi.edu/academics/courses/spring14/ds/memory_debugging.php

To run the code above under Dr. Memory:

drmemory -brief -batch -- foo.exe arg1 arg2

And here’s how Dr. Memory reports the errors:

~~Dr.M~~ Dr. Memory version 1.4.3

~~Dr.M~~ Running ""E:\drmemory_test.exe""

~~Dr.M~~

~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 4 byte(s)

~~Dr.M~~ # 0 main [drmemory_test.cpp:6]

hi

~~Dr.M~~

~~Dr.M~~ Error #2: UNADDRESSABLE ACCESS: writing 4 byte(s)

~~Dr.M~~ # 0 main [drmemory_test.cpp:9]

~~Dr.M~~ Note: refers to 1 byte(s) beyond last valid byte in prior malloc

~~Dr.M~~

~~Dr.M~~ Error #3: LEAK 4 bytes

~~Dr.M~~ # 0 operator new

~~Dr.M~~ # 1 main [drmemory_test.cpp:5]

~~Dr.M~~

~~Dr.M~~ ERRORS FOUND:

~~Dr.M~~ 1 unique, 1 total unaddressable access(es)

~~Dr.M~~ 1 unique, 1 total uninitialized access(es)

~~Dr.M~~ 0 unique, 0 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 1 unique, 1 total, 4 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

~~Dr.M~~ Details: E:\DrMemory-drmemory_test.exe.5432.000/results.txt

And the fixed version:

~~Dr.M~~ Dr. Memory version 1.4.3

~~Dr.M~~ Running ""E:\drmemory_fixed.exe""

hi

~~Dr.M~~

~~Dr.M~~ ERRORS FOUND:

~~Dr.M~~ 0 unique, 0 total unaddressable access(es)

~~Dr.M~~ 0 unique, 0 total uninitialized access(es)

~~Dr.M~~ 0 unique, 0 total invalid heap argument(s)

~~Dr.M~~ 0 unique, 0 total warning(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of leak(s)

~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)

Note: Dr. Memory does not report the Mismatched free() / delete / delete [] error, unless it is associated
with indirect memory leaks.
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http://www.drmemory.org
http://www.cs.rpi.edu/academics/courses/spring14/ds/memory_debugging.php

