CSCI-1200 Data Structures — Spring 2014
Lecture 16 — Trees, Part 1

Review from Lectures 15

e Maps containing more complicated values. Example: index mapping words to the text line numbers on which
they appear.

e Maps whose keys are class objects. Example: maintaining student records.
e Lists vs. Graphs vs. Trees

e Intro to Binary Trees, Binary Search Trees, & Balanced Trees

Today’s Lecture
e STL set container class (like STL map, but without the pairs!)
e Implementation of ds_set class using binary search trees
e In-order, pre-order, and post-order traversal

e Breadth-first and depth-first tree search

16.1 Standard Library Sets

e STL sets are ordered containers storing unique “keys”. An ordering relation on the keys, which defaults to
operator<, is necessary. Because STL sets are ordered, they are technically not traditional mathematical sets.

e Sets are like maps except they have only keys, there are no associated values. Like maps, the keys are constant.
This means you can’t change a key while it is in the set. You must remove it, change it, and then reinsert it.

e Access to items in sets is extremely fast! O(log n), just like maps.

e Like other containers, sets have the usual constructors as well as the size member function.

16.2 Set iterators

e Set iterators, similar to map iterators, are bidirectional: they allow you to step forward (++) and backward
(--) through the set. Sets provide begin() and end() iterators to delimit the bounds of the set.

e Set iterators refer to const keys (as opposed to the pairs referred to by map iterators). For example, the
following code outputs all strings in the set words:

for (set<string>::iterator p = words.begin(); p!= words.end(); ++p)
cout << *p << endl;

16.3 Set insert

e There are two different versions of the insert member function. The first version inserts the entry into the
set and returns a pair. The first component of the returned pair refers to the location in the set containing the
entry. The second component is true if the entry wasn’t already in the set and therefore was inserted. It is
false otherwise. The second version also inserts the key if it is not already there. The iterator pos is a “hint”
as to where to put it. This makes the insert faster if the hint is good.

pair<iterator,bool> set<Key>::insert(const Key& entry);
iterator set<Key>::insert(iterator pos, const Key& entry);

16.4 Set erase

e There are three versions of erase. The first erase returns the number of entries removed (either 0 or 1). The
second and third erase functions are just like the corresponding erase functions for maps. Note that the erase
functions do not return iterators. This is different from the vector and list erase functions.

size_type set<Key>::erase(const Key& x);
void set<Key>::erase(iterator p);
void set<Key>::erase(iterator first, iterator last);



16.5 Set find

e The find function returns the end iterator if the key is not in the set:

const_iterator set<Key>::find(const Key& x) const;

16.6 Beginning our implementation of ds_set: The Tree Node Class
e Here is the class definition for nodes in the tree. We will use this for the tree manipulation code we write.

template <class T> class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNode* left;
TreeNode* right;

1
e Note: Sometimes a 3rd pointer — to the parent TreeNode — is added.

16.7 Exercises

1. Write a templated function to find the smallest value stored in a binary search tree whose root node is pointed
to by p.

2. Write a function to count the number of odd numbers stored in a binary tree (not necessarily a binary search
tree) of integers. The function should accept a TreeNode<int> pointer as its sole argument and return an
integer. Hint: think recursively!

16.8 ds_set and Binary Search Tree Implementation

e A partial implementation of a set using a binary search tree is in the code attached. We will continue to study
this implementation in tomorrow’s lab & the next lecture.

e The increment and decrement operations for iterators have been omitted from this implementation. Next
lecture we will discuss a couple strategies for adding these operations.

e We will use this as the basis both for understanding an initial selection of tree algorithms and for thinking
about how standard library sets really work.



16.9 ds_set: Class Overview

There is two auxiliary classes, TreeNode and tree_iterator. All three classes are templated.
The only member variables of the ds_set class are the root and the size (number of tree nodes).

The iterator class is declared internally, and is effectively a wrapper on the TreeNode pointers.
— Note that operator* returns a const reference because the keys can’t change.
— The increment and decrement operators are missing (we’ll fill this in next lecture!).

The main public member functions just call a private (and often recursive) member function (passing the root
node) that does all of the work.

Because the class stores and manages dynamically allocated memory, a copy constructor, operator=, and
destructor must be provided.

16.10 Exercises

1.

2.

Provide the implementation of the member function ds_set<T>::begin. This is essentially the problem of
finding the node in the tree that stores the smallest value.

Write a recursive version of the function find.

16.11 In-order, Pre-Order, Post-Order Traversal

One of the fundamental tree operations is “traversing” the nodes in the tree and doing something at each node.
The “doing something”, which is often just printing, is referred to generically as “visiting” the node.

There are three general orders in which binary trees are traversed: pre-order, in-order and post-order.

In order to explain these, let’s first draw an “exactly balanced” binary search tree with the elements 1-7:

— What is the in-order traversal of this tree? Hint: it is monotonically increasing, which is always true for
an in-order traversal of a binary search tree!



— What is the post-order traversal of this tree? Hint, it ends with “4” and the 3rd element printed is “2”.

— What is the pre-order traversal of this tree? Hint, the last element is the same as the last element of the
in-order traversal (but that is not true in general! why not?)

e Now let’s write code to print out the elements in a binary tree in each of these three orders. These functions
are easy to write recursively, and the code for the three functions looks amazingly similar. Here’s the code for
an in-order traversal to print the contents of a tree:

void print_in_order(ostream& ostr, const TreeNode<T>* p) {
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);

}
}

How would you modify this code to perform pre-order and post-order traversals?

16.12 Depth-first vs. Breadth-first Search

e We should also discuss two other important tree traversal terms related to problem solving and searching.

— In a depth-first search, we greedily follow links down into the tree, and don’t backtrack until we have hit
a leaf.

When we hit a leaf we step back out, but only to the last decision point and then proceed to the next leaf.

This search method will quickly investigate leaf nodes, but if it has made “incorrect” branch decision early
in the search, it will take a long time to work back to that point and go down the “right” branch.

— In a breadth-first search, the nodes are visited with priority based on their distance from the root, with
nodes closer to the root visited first.

In other words, we visit the nodes by level, first the root (level 0), then all children of the root (level 1),
then all nodes 2 links from the root (level 2), etc.

If there are multiple solution nodes, this search method will find the solution node with the shortest path
to the root node.

However, the breadth-first search method is memory-intensive, because the implementation must store all
nodes at the current level — and the worst case number of nodes on each level doubles as we progress down
the tree!

e Both depth-first and breadth-first will eventually visit all elements in the tree.

e Note: The ordering of elements visited by depth-first and breadth-first is not fully specified.

— In-order, pre-order, and post-order are all ezamples of depth-first tree traversals.

— What is a breadth-first traversal of the elements in our sample binary search tree above? (We’ll write and
discuss code for breadth-first traversal next lecture!)



// Partial implementation of binary-tree based set class similar to std:

// The iterator increment & decrement operations have been omitted.
#ifndef ds_set_h_

#define ds_set_h_

#include <iostream>

#include <utility>

/- - -—- - oo
// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL) {}
T value;
TreeNode* left;
TreeNode* right;
};

template <class T> class ds_set;

// - -== -== -== -== -—==
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {}
~tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_;
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparions operators are straightforward
bool operator==(const tree_iterator& r) { return ptr_ == r.ptr_; }
bool operator!=(const tree_iterator& r) { return ptr_ != r.ptr_; }
// increment & decrement will be discussed in Lecture 17 and Lab 11

private:
// representation
TreeNode<T>* ptr_;
};

[/ mmm
// DS SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {}
ds_set(const ds_set<T>& o0ld) : size_(old.size_) {
root_ = this->copy_tree(old.root_); }
~“ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) {
if (&old !'= this) {
this->destroy_tree(root_);

root_ = this->copy_tree(old.root_);
size_ = old.size_;

}

return *this;

}
typedef tree_iterator<T> iterator;

int size() const { return size_; }

:set.

return *this; }

bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }



// FIND, INSERT & ERASE

iterator find(const T& key_value) { return find(key_value, root_); }

std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_); }
int erase(T const& key_value) { return erase(key_value, root_); }

// OUTPUT & PRINTING

friend std::ostream& operator<< (std::ostream& ostr, const ds_set<T>& s) {
s.print_in_order(ostr, s.root_);
return ostr;

}

void print_as_sideways_tree(std::ostream& ostr) const { print_as_sideways_tree(ostr, root_, 0); }

// ITERATORS
iterator begin() const {
// Implemented in Lecture 16

}

iterator end() const { return iterator(NULL); }

private:

};

// REPRESENTATION
TreeNode<T>* root_;
int size_;

// PRIVATE HELPER FUNCTIONS
TreeNode<T>* copy_tree(TreeNode<T>* old_root) { /* Implemented in Lab 10 */ }
void destroy_tree(TreeNode<T>* p) { /* Implemented in Lecture 17 */ }

iterator find(const T& key_value, TreeNode<T>* p) {
// Implemented in Lecture 16

}

std::pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p) { /* Discussed in Lecture 17 */
int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 17 */ }

void print_in_order(std::ostream& ostr, const TreeNode<T>* p) const {
// Discussed in Lecture 16
if (p) {
print_in_order(ostr, p->left);
ostr << p->value << "\n";
print_in_order(ostr, p->right);
}
}

void print_as_sideways_tree(std::ostream& ostr, const TreeNode<T>* p, int depth) const {
/* Discussed in Lecture 17 */ 1}

#endif

}



	Standard Library Sets
	Set iterators
	Set insert
	Set erase
	Set find
	Beginning our implementation of ds_set: The Tree Node Class
	Exercises
	ds_set and Binary Search Tree Implementation
	ds_set: Class Overview
	Exercises
	In-order, Pre-Order, Post-Order Traversal
	Depth-first vs. Breadth-first Search

