
CSCI-1200 Data Structures — Spring 2014

Lecture 20 – Priority Queues

Review from Lecture 19

• A hash table is implemented with a array at the top level. Each key is mapped to a slot in the array by a hash
function, a simple function of one argument (the key) which returns an index (a bucket or slot in the array).

• CallerID Performance: Vectors vs. Binary Search Trees vs. Hash Tables

• Hash Table Collision Resolution

• Using a Hash Table to Implement a set.

– Function objects, Iterators, Fundamental operations: find, insert and erase.

Today’s Lecture

• STL Queues and Stacks

• What’s a Priority Queue?

• A Priority Queue as a Heap

• percolate_up and percolate_down

• A Heap as a Vector

• Building a Heap

• Heap Sort

• Merging heaps are the motivation for leftist heaps

20.1 Additional STL Container Classes: Stacks and Queues

• We’ve studied STL vectors, lists, maps, and sets. These data structures provide a wide range of flexibility in
terms of operations. One way to obtain computational efficiency is to consider a simplified set of operations or
functionality.

• For example, with a hash table we give up the notion of a sorted table and gain in find, insert, & erase efficiency.

• 2 additional examples are:

– Stacks allow access, insertion and deletion from only one end called the top

∗ There is no access to values in the middle of a stack.

∗ Stacks may be implemented efficiently in terms of vectors and lists, although vectors are preferable.

∗ All stack operations are O(1)

– Queues allow insertion at one end, called the back and removal from the other end, called the front

∗ There is no access to values in the middle of a queue.

∗ Queues may be implemented efficiently in terms of a list. Using vectors for queues is also possible,
but requires more work to get right.

∗ All queue operations are O(1)

20.2 What’s a Priority Queue?

• Priority queues are used in prioritizing operations. Examples include a personal “to do” list, jobs on a shop
floor, packet routing in a network, scheduling in an operating system, or events in a simulation.

• Among the data structures we have studied, their interface is most similar to a queue, including the idea of a
front or top and a tail or a back.

• Each item is stored in a priority queue using an associated “priority” and therefore, the top item is the one
with the lowest value of the priority score. The tail or back is never accessed through the public interface to
a priority queue.

• The main operations are insert or push, and pop (or delete_min).



20.3 Some Data Structure Options for Implementing a Priority Queue

• Vector or list, either sorted or unsorted

– At least one of the operations, push or pop, will cost linear time, at least if we think of the container as a
linear structure.

• Binary search trees

– If we use the priority as a key, then we can use a combination of finding the minimum key and erase to
implement pop. An ordinary binary-search-tree insert may be used to implement push.

– This costs logarithmic time in the average case (and in the worst case as well if balancing is used).

• The latter is the better solution, but we would like to improve upon it — for example, it might be more natural
if the minimum priority value were stored at the root.

– We will achieve this with binary heap, giving up the complete ordering imposed in the binary search tree.

20.4 Definition: Binary Heaps

• A binary heap is a complete binary tree such that at each internal node, p, the value stored is less than the
value stored at either of p’s children.

– A complete binary tree is one that is completely filled, except perhaps at the lowest level, and at the
lowest level all leaf nodes are as far to the left as possible.

• Binary heaps will be drawn as binary trees, but implemented using vectors!

• Alternatively, the heap could be organized such that the value stored at each internal node is greater than the
values at its children.

20.5 Exercise: Drawing Binary Heaps

Draw two different binary heaps with these values: 52 13 48 7 32 40 18 25 4

20.6 Implementing Pop (a.k.a. Delete Min)

• The top (root) of the tree is removed.

• It is replaced by the value stored in the last leaf node. This has echoes of the erase function in binary search
trees. NOTE: We have not yet discussed how to find the last leaf.

• The last leaf node is removed.

• The (following) percolate_down function is then run to restore the heap property. This function is written
here in terms of tree nodes with child pointers (and the priority stored as a value), but later it will be written
in terms of vector subscripts.

percolate_down(TreeNode<T> * p) {

while (p->left) {

TreeNode<T>* child;

// Choose the child to compare against

if (p->right && p->right->value < p->left->value)

child = p->right;

else

child = p->left;

if (child->value < p->value) {

swap(child, p); // value and other non-pointer member vars

p = child;

}

else

break;

}

}

2



20.7 Push / Insert

• To add a value to the heap, a new last leaf node in the tree is created and then the following percolate_up

function is run. It assumes each node has a pointer to its parent.

percolate_up(TreeNode<T> * p) {

while (p->parent)

if (p->value < p->parent->value) {

swap(p, parent); // value and other non-pointer member vars

p = p->parent;

}

else

break;

}

20.8 Analysis

• Both percolate_down and percolate_up are O(log n) in the worst-case. Why?

• But, percolate_up (and as a result push) can be O(1) in the average case. Why?

20.9 Exercise

Suppose the following operations are applied to an initially empty binary heap of integers. Show the resulting heap
after each delete_min operation. (Remember, the tree must be complete!)

push 5, push 3, push 8, push 10, push 1, push 6,

pop,

push 14, push 2, push 4, push 7,

pop,

pop,

pop

20.10 Vector Implementation

• In the vector implementation, the tree is never explicitly constructed. Instead the heap is stored as a vector,
and the child and parent “pointers” can be implicitly calculated.

• To do this, number the nodes in the tree starting with 0 first by level (top to bottom) and then scanning across
each row (left to right). These are the vector indices. Place the values in a vector in this order.

• As a result, for each subscript, i,

– The parent, if it exists, is at location b(i− 1)/2c.
– The left child, if it exists, is at location 2i + 1.

– The right child, if it exists, is at location 2i + 2.

• For a binary heap containing n values, the last leaf is at location n − 1 in the vector and the last internal
(non-leaf) node is at location b(n− 1)/2c.

• The standard library (STL) priority_queue is implemented as a binary heap.

3



20.11 Exercise

Draw a binary heap with values: 52 13 48 7 32 40 18 25 4, first as a tree of nodes & pointers, then in vector
representation.

20.12 Exercise

Show the vector contents for the binary heap after each delete min operation.

push 8, push 12, push 7, push 5, push 17, push 1,

pop,

push 6, push 22, push 14, push 9,

pop,

pop,

20.13 Building A Heap

• In order to build a heap from a vector of values, for each index from b(n−1)/2c down to 0, run percolate_down.
Show that this fully organizes the data as a heap and requires at most O(n) operations.

• If instead, we ran percolate_up from each index starting at index 0 through index n-1, we would get properly
organized heap data, but incur a O(n log n) cost. Why?

20.14 Heap Sort

• Heap Sort is a simple algorithm to sort a vector of values: build a heap and then run n consecutive pop

operations, storing each “popped” value in a new vector.

• It is straightforward to show that this requires O(n log n) time.

• Exercise: Implement an in-place heap sort. An in-place algorithm uses only the memory holding the input
data – a separate large temporary vector is not needed.

4



20.15 Summary Notes about Vector-Based Priority Queues

• Priority queues are conceptually similar to queues, but the order in which values / entries are removed
(“popped”) depends on a priority.

• Heaps, which are conceptually a binary tree but are implemented in a vector, are the data structure of choice
for a priority queue.

• In some applications, the priority of an entry may change while the entry is in the priority queue. This requires
that there be “hooks” (usually in the form of indices) into the internal structure of the priority queue. This is
an implementation detail we have not discussed.

20.16 Leftist Heaps — Overview

• Our goal is to be able to merge two heaps in O(log n) time, where n is the number of values stored in the larger
of the two heaps.

– Merging two binary heaps (where every row but possibly the last is full) requires O(n) time

• Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.

– Why? Well, consider the most unbalanced tree structure possible. If the data also maintains the heap
property, we essentially have a sorted linked list.

• Leftists heaps are implemented explicitly as trees (rather than vectors).

20.17 Leftist Heaps — Mathematical Background

• Definition: The null path length (NPL) of a tree node is the length of the shortest path to a node with 0
children or 1 child. The NPL of a leaf is 0. The NPL of a NULL pointer is -1.

• Definition: A leftist tree is a binary tree where at each node the null path length of the left child is greater
than or equal to the null path length of the right child.

• Definition: The right path of a node (e.g. the root) is obtained by following right children until a NULL child
is reached.

– In a leftist tree, the right path of a node is at least as short as any other path to a NULL child.

• Theorem: A leftist tree with r > 0 nodes on its right path has at least 2r − 1 nodes.

– This can be proven by induction on r.

• Corollary: A leftist tree with n nodes has a right path length of at most blog(n + 1)c = O(log n) nodes.

• Definition: A leftist heap is a leftist tree where the value stored at any node is less than or equal to the value
stored at either of its children.

20.18 Leftist Heap Operations

• The insert and delete_min operations will depend on the merge operation.

• Here is the fundamental idea behind the merge operation. Given two leftist heaps, with h1 and h2 pointers to
their root nodes, and suppose h1->value <= h2->value. Recursively merge h1->right with h2, making the
resulting heap h1->right.

• When the leftist property is violated at a tree node involved in the merge, the left and right children of this
node are swapped. This is enough to guarantee the leftist property of the resulting tree.

• Merge requires O(log n+logm) time, where m and n are the numbers of nodes stored in the two heaps, because
it works on the right path at all times.

5



20.19 Merge Code

template <class T>

class LeftNode {

public:

LeftNode() : npl(0), left(0), right(0) {}

LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}

T value;

int npl; // the null-path length

LeftNode* left;

LeftNode* right;

};

Here are the two functions used to implement leftist heap merge operations. Function merge is the driver. Function
merge1 does most of the work. These functions call each other recursively.

template <class Etype>

LeftNode<Etype>* merge(LeftNode<Etype> *H1,LeftNode<Etype> *H2) {

if (!h1)

return h2;

else if (!h2)

return h1;

else if (h2->value > h1->value)

return merge1(h1, h2);

else

return merge1(h2, h1);

}

template <class Etype>

LeftNode<Etype>* merge1(LeftNode<Etype> *h1, LeftNode<Etype> *h2) {

if (h1->left == NULL)

h1->left = h2;

else {

h1->right = merge(h1->right, h2);

if(h1->left->npl < h1->right->npl)

swap(h1->left, h1->right);

h1->npl = h1->right->npl + 1;

}

return h1;

}

20.20 Exercises

1. Explain how merge can be used to implement insert and delete_min, and then write code to do so.

2. Show the state of a leftist heap at the end of:

insert 1, 2, 3, 4, 5, 6

delete_min

insert 7, 8

delete_min

delete_min

6


	Additional STL Container Classes: Stacks and Queues
	What's a Priority Queue?
	Some Data Structure Options for Implementing a Priority Queue
	Definition: Binary Heaps
	Exercise: Drawing Binary Heaps
	Implementing Pop (a.k.a. Delete Min)
	Push / Insert
	Analysis
	Exercise
	Vector Implementation
	Exercise
	Exercise
	Building A Heap
	Heap Sort
	Summary Notes about Vector-Based Priority Queues
	Leftist Heaps — Overview
	Leftist Heaps — Mathematical Background
	Leftist Heap Operations
	Merge Code
	Exercises

