
CSCI-1200 Data Structures — Spring 2014

Lecture 23 – Operators

Review from Lecture 22

• Basic exception mechanisms: try/throw/catch

• Functions & exceptions, constructors & exceptions

Today’s Lecture

• Finish Leftist Heaps

• Operators as non-member functions, as member functions, and as friend functions.

• Some tree practice problems

23.1 Leftist Heaps — Overview

• Our goal is to be able to merge two heaps in O(log n) time, where n is the number of values stored in the larger
of the two heaps.

– Merging two binary heaps (where every row but possibly the last is full) requires O(n) time

• Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.

– Why? Well, consider the most unbalanced tree structure possible. If the data also maintains the heap
property, we essentially have a sorted linked list.

• Leftists heaps are implemented explicitly as trees (rather than vectors).

23.2 Leftist Heaps — Mathematical Background

• Definition: The null path length (NPL) of a tree node is the length of the shortest path to a node with 0
children or 1 child. The NPL of a leaf is 0. The NPL of a NULL pointer is -1.

• Definition: A leftist tree is a binary tree where at each node the null path length of the left child is greater
than or equal to the null path length of the right child.

• Definition: The right path of a node (e.g. the root) is obtained by following right children until a NULL child
is reached.

– In a leftist tree, the right path of a node is at least as short as any other path to a NULL child.

• Theorem: A leftist tree with r > 0 nodes on its right path has at least 2r − 1 nodes.

– This can be proven by induction on r.

• Corollary: A leftist tree with n nodes has a right path length of at most blog(n + 1)c = O(log n) nodes.

• Definition: A leftist heap is a leftist tree where the value stored at any node is less than or equal to the value
stored at either of its children.

23.3 Leftist Heap Operations

• The insert and delete_min operations will depend on the merge operation.

• Here is the fundamental idea behind the merge operation. Given two leftist heaps, with h1 and h2 pointers to
their root nodes, and suppose h1->value <= h2->value. Recursively merge h1->right with h2, making the
resulting heap h1->right.

• When the leftist property is violated at a tree node involved in the merge, the left and right children of this
node are swapped. This is enough to guarantee the leftist property of the resulting tree.

• Merge requires O(log n+logm) time, where m and n are the numbers of nodes stored in the two heaps, because
it works on the right path at all times.

23.4 Merge Code

template <class T>

class LeftNode {

public:

LeftNode() : npl(0), left(0), right(0) {}

LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}

T value;

int npl; // the null-path length

LeftNode* left;

LeftNode* right;

};

Here are the two functions used to implement leftist heap merge operations. Function merge is the driver. Function
merge1 does most of the work. These functions call each other recursively.

template <class Etype>

LeftNode<Etype>* merge(LeftNode<Etype> *H1,LeftNode<Etype> *H2) {

if (!h1)

return h2;

else if (!h2)

return h1;

else if (h2->value > h1->value)

return merge1(h1, h2);

else

return merge1(h2, h1);

}

template <class Etype>

LeftNode<Etype>* merge1(LeftNode<Etype> *h1, LeftNode<Etype> *h2) {

if (h1->left == NULL)

h1->left = h2;

else {

h1->right = merge(h1->right, h2);

if(h1->left->npl < h1->right->npl)

swap(h1->left, h1->right);

h1->npl = h1->right->npl + 1;

}

return h1;

}

23.5 Exercises

1. Explain how merge can be used to implement insert and delete_min, and then write code to do so.

2. Show the state of a leftist heap at the end of:

insert 1, 2, 3, 4, 5, 6

delete_min

insert 7, 8

delete_min

delete_min

23.6 Complex Numbers — A Brief Review

• Complex numbers take the form z = a + bi, where i =
√
−1 and a and b are real. a is called the real part, b is

called the imaginary part.

2

• If w = c + di, then

– w + z = (a + c) + (b + d)i,

– w − z = (a− c) + (b− d)i, and

– w × z = (ac− bd) + (ad + bc)i

• The magnitude of a complex number is
√
a2 + b2.

23.7 Complex Class declaration (complex.h)

class Complex {

public:

Complex(double x=0, double y=0) : real_(x), imag_(y) {} // default constructor

Complex(Complex const& old) : real_(old.real_), imag_(old.imag_) {} // copy constructor

Complex& operator= (Complex const& rhs); // Assignment operator

double Real() const { return real_; }

void SetReal(double x) { real_ = x; }

double Imaginary() const { return imag_; }

void SetImaginary(double y) { imag_ = y; }

double Magnitude() const { return sqrt(real_*real_ + imag_*imag_); }

Complex operator+ (Complex const& rhs) const;

Complex operator- () const; // unary operator- negates a complex number

friend istream& operator>> (istream& istr, Complex& c);

private:

double real_, imag_;

};

Complex operator- (Complex const& left, Complex const& right); // non-member function

ostream& operator<< (ostream& ostr, Complex const& c); // non-member function

23.8 Implementation of Complex Class (complex.cpp)

// Assignment operator

Complex& Complex::operator= (Complex const& rhs) {

real_ = rhs.real_;

imag_ = rhs.imag_;

return *this;

}

// Addition operator as a member function.

Complex Complex::operator+ (Complex const& rhs) const {

double re = real_ + rhs.real_;

double im = imag_ + rhs.imag_;

return Complex(re, im);

}

// Subtraction operator as a non-member function.

Complex operator- (Complex const& lhs, Complex const& rhs) {

return Complex(lhs.Real()-rhs.Real(), lhs.Imaginary()-rhs.Imaginary());

}

// Unary negation operator. Note that there are no arguments.

Complex Complex::operator- () const {

return Complex(-real_, -imag_);

}

// Input stream operator as a friend function

istream& operator>> (istream & istr, Complex & c) {

istr >> c.real_ >> c.imag_;

return istr;

}

// Output stream operator as an ordinary non-member function

ostream& operator<< (ostream & ostr, Complex const& c) {

if (c.Imaginary() < 0) ostr << c.Real() << " - " << -c.Imaginary() << " i ";

else ostr << c.Real() << " + " << c.Imaginary() << " i ";

return ostr;

}

3

23.9 Operators as Non-Member Functions and as Member Functions

• We have already written our own operators, especially operator<, to sort objects stored in STL containers
and to create our own keys for maps.

• We can write them as non-member functions (e.g., operator-). When implemented as a non-member function,
the expression: z - w is translated by the compiler into the function call: operator- (z, w)

• We can also write them as member functions (e.g., operator+). When implemented as a member function, the
expression: z + w is translated into: z.operator+ (w)

This shows that operator+ is a member function of z, since z appears on the left-hand side of the operator.
Observe that the function has only one argument!

There are several important properties of the implementation of an operator as a member function:

– It is within the scope of class Complex, so private member variables can be accessed directly.

– The member variables of z, whose member function is actually called, are referenced by directly by name.

– The member variables of w are accessed through the parameter rhs.

– The member function is const, which means that z will not (and can not) be changed by the function.
Also, since w will not be changed since the argument is also marked const.

• Both operator+ and operator- return Complex objects, so both must call Complex constructors to create these
objects. Calling constructors for Complex objects inside functions, especially member functions that work on
Complex objects, seems somewhat counter-intuitive at first, but it is common practice!

23.10 Assignment Operators

• The assignment operator: z1 = z2; becomes a function call: z1.operator=(z2);

And cascaded assignments like: z1 = z2 = z3; are really: z1 = (z2 = z3);

which becomes: z1.operator= (z2.operator= (z3));

Studying these helps to explain how to write the assignment operator, which is usually a member function.

• The argument (the right side of the operator) is passed by constant reference. Its values are used to change
the contents of the left side of the operator, which is the object whose member function is called. A reference
to this object is returned, allowing a subsequent call to operator= (z1’s operator= in the example above).

The identifier this is reserved as a pointer inside class scope to the object whose member function is called.
Therefore, *this is a a reference to this object.

• The fact that operator= returns a reference allows us to write code of the form: (z1 = z2).real();

23.11 Exercise

Write an operator+= as a member function of the Complex class. To do so, you must combine what you learned
about operator= and operator+. In particular, the new operator must return a reference, *this.

23.12 Returning Objects vs. Returning References to Objects

• In the operator+ and operator- functions we create new Complex objects and simply return the new object.
The return types of these operators are both Complex.

Technically, we don’t return the new object (which is stored only locally and will disappear once the scope of
the function is exited). Instead we create a copy of the object and return the copy. This automatic copying
happens outside of the scope of the function, so it is safe to access outside of the function. Note: It’s important
that the copy constructor is correctly implemented! Good compilers can minimize the amount of redundant
copying without introducing semantic errors.

• When you change an existing object inside an operator and need to return that object, you must return a
reference to that object. This is why the return types of operator= and operator+= are both Complex&.
This avoids creation of a new object.

• A common error made by beginners (and some non-beginners!) is attempting to return a reference to a locally
created object! This results in someone having a pointer to stale memory. The pointer may behave correctly
for a short while... until the memory under the pointer is allocated and used by someone else.

4

23.13 Friend Classes vs. Friend Functions

• In the example below, the Foo class has designated the Bar to be a friend. This must be done in the public

area of the declaration of Foo.

class Foo {

public:

friend class Bar;

...

};

This allows member functions in class Bar to access all of the private member functions and variables of a Foo

object as though they were public (but not vice versa). Note that Foo is giving friendship (access to its private
contents) rather than Bar claiming it. What could go wrong if we allowed friendships to be claimed?

• Alternatively, within the definition of the class, we can designate specific functions to be “friend”s, which
grants these functions access similar to that of a member function. The most common example of this is
operators, and especially stream operators.

23.14 Stream Operators as Friend Functions

• The operators >> and << are defined for the Complex class. These are binary operators.
The compiler translates: cout << z3 into: operator<< (cout, z3)

Consecutive calls to the << operator, such as: cout << "z3 = " << z3 << endl;

are translated into: ((cout << "z3 = ") << z3) << endl;

Each application of the operator returns an ostream object so that the next application can occur.

• If we wanted to make one of these stream operators a regular member function, it would have to be a member
function of the ostream class because this is the first argument (left operand). We cannot make it a member
function of the Complex class. This is why stream operators are never member functions.

• Stream operators are either ordinary non-member functions (if the operators can do their work through the
public class interface) or friend functions (if they need non public access).

23.15 Summary of Operator Overloading in C++

• Unary operators that can be overloaded: + - * & ~ ! ++ -- -> ->*

• Binary operators that can be overloaded: + - * / % ^ & | << >> += -= *= /= %= ^=

&= |= <<= >>= < <= > >= == != && || , [] () new new[] delete delete[]

• There are only a few operators that can not be overloaded: . .* ?: ::

• We can’t create new operators and we can’t change the number of arguments (except for the function call
operator, which has a variable number of arguments).

• There are three different ways to overload an operator. When there is a choice, we recommend trying to write
operators in this order:

– Non-member function

– Member function

– Friend function

• The most important rule for clean class design involving operators is to NEVER change the intuitive
meaning of an operator. The whole point of operators is lost if you do. One (bad) example would be
defining the increment operator on a Complex number.

23.16 Extra Practice

• Implement the following operators for the Complex class (or explain why they cannot or should not be imple-
mented). Think about whether they should be non-member, member, or friend.

operator* operator== operator!= operator<

5

23.17 A Tree Practice Problem

• Draw a balanced binary tree that contains the values: 6, 13, 9, 17, 32, 23, and 20.

• What is the height of a balanced binary tree storing n elements?

• Draw a binary search tree that has post-order traversal: 6 13 9 17 32 23 20.

• How many other correct answers are possible for the previous problem?

23.18 Another Tree Practice Problem

A trinary tree is similar to a binary tree except that each node has at most 3 children. Write a recursive function
named EqualsChildrenSum that takes one argument, a pointer to the root of a trinary tree, and returns true if the
value at each non-leaf node is the sum of the values of all of its children and false otherwise. In the examples below,
the tree on the left will return true and the tree on the right will return false.

class Node {

public:

int value;

Node* left;

Node* middle;

Node* right;

};

10

5 4

9−10732

4 −3 9

−1 5 −5

4 2

−3

1

5

6

	Leftist Heaps — Overview
	Leftist Heaps — Mathematical Background
	Leftist Heap Operations
	Merge Code
	Exercises
	Complex Numbers — A Brief Review
	Complex Class declaration (complex.h)
	Implementation of Complex Class (complex.cpp)
	Operators as Non-Member Functions and as Member Functions
	Assignment Operators
	Exercise
	Returning Objects vs. Returning References to Objects
	Friend Classes vs. Friend Functions
	Stream Operators as Friend Functions
	Summary of Operator Overloading in C++
	Extra Practice
	A Tree Practice Problem
	Another Tree Practice Problem

