CSCl1.4430/6430 Programming Languages Spring 2015
Programming Assignment #2

This assignment is to be done either individually or in pairs. Do not show your code to any other
group and do not look at any other group's code. Do not put your code in a public directory or
otherwise make it public. However, you may get help from the TAs or the instructor. You are
encouraged to use the LMS Discussions page to post problems so that other students can also
answer/see the answers.

Lambda Calculus Interpreter

The goal of this assignment is to write a lambda calculus interpreter in Oz to reduce lambda
expressions in a call-by-value (applicative order) manner.

You are to use the following grammar for the lambda calculus:

<expression> ::= <atom>
| lambda (<atom> <expression>)
| [<expression> <expression>]

Your interpreter is expected to take the lambda calculus expression and perform repeatedly beta
reduction until no longer possible (a value expression that can no longer be beta-reduced) and then eta
reduction until no longer possible.

Once your interpreter is finished, you should be able to execute statements such as:
{Browse {Run [lambda(x x) yl}} % should display y

Below are more test cases:

Expression Result Comment

[lambda(x lambda(y [(x 1)) [y w]] lambda(z [[Y AYOld capturing the free variable
w] z]) yin [y w]

[lambda(x x) y] y Identity combinator
lambda(x [y X]) y Eta reduction
[[lambda(y lambda(x [y x])) lambda(x T .
[x x1)] ¥ [y ¥I Application combinator
[[[lambda(b lambda(t lambda(e [[b t] .
el))) lambda(x lambda(y x))] %] ¥] X If-then-else combinator
lambda(x [[lambda(x [y x]) lambda(x [y z] Eta reductions
[z x1)]1 x])

[lambda(y [lambda(x lambda(y [x y1)) Alpha renaming, beta reduction

v1)

ly w]

[y wll and eta reduction all involved

Hints: You may define auxiliary procedures for alpha-renaming, beta-reduction, and eta-reduction. For
beta reduction, you may want to write an auxiliary procedure that substitutes all occurrences of a
variable in an expression for another expression. Be sure that the replacing expression does not
include free variables that would become captured in the substitution. Remember that in call-by-value,
the argument to a function is evaluated before the function is called.

Extra Credit (Up to 25% bonus)

1.

Create a call-by-name (normal order evaluation) lambda expression interpreter. Your interpreter
should be able to bypass the infinite loop during the reduction of the following expression:

[lambda(x y) [lambda(x [x xX]) lambda(x [x x])]] % should display y

2. Write a function {AreEqual E1 E2} to decide whether two reduced lambda expressions E1 and

E2 equate:

{AreEqual lambda(x x) lambda(y y)} % returns true

. Implement the following "let" expression:

<expression> ::= let(<atom> <expression> <expression>)
meaning let <atom> = <expression> in the right hand side <expression>, for example,
let(x lambda(x x) [x X])

would be interpreted as [lambda(x x) lambda(x x)] returning the identity combinator.

. Implement the basic arithmetic operators: plus, minus, times and div, and numbers in the places

of expressions, for example,
[lambda(x [plus x 2]) 3]
would be evaluated to 5, and
(let a 5 [lambda(x [plus x a]) 31)

would be evaluated to 8.

. See the professor if you have ideas for other extensions to this assignment and would like extra

credit for implementing them.

Due Date:

|Received Time |Grade Modification
lbefore Tuesday, 03/10, 6:00PM [+10%

|bef0re Wednesday, 03/11, 6:00PM |n0 modification (on time)
lbefore Thursday 03/12, 6:00PM ~ |-10%

before Saturday, 03/14, 6:00PM [-25%

|after Saturday, 03/14, 6:01PM |n0t accepted

Grading: The assignment will be graded mostly on correctness, but code clarity / readability will also
be a factor (comment, comment, comment!). See the professor or TAs, if you have ideas for other
extensions for this assignment and would like extra credit for implementing them.

Submission Requirements: Please submit a ZIP file with your code, including a README file. In
the README file, place the names of each group member (up to two). Your README file should
also have a list of specific features / bugs in your solution. Your ZIP file should be named with your
LMS user name(s) as the filename, either userid1.zip or userid1_userid2.zip. Only submit one
assignment per pair via LMS.

