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Introduction to Oz 
•  An introduction to programming concepts 
•  Declarative variables 
•  Structured data (example: lists) 
•  Functions over lists 
•  Correctness and complexity 
•  Lazy functions 
•  Higher-order programming 
•  Concurrency and dataflow 
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Variables 
•  Variables are short-cuts for values, they cannot be assigned 

more than once 
  declare 

   V = 9999*9999 
  {Browse V*V} 

 
•  Variable identifiers: is what you type 
•  Store variable: is part of the memory system 
•  The declare statement creates a store variable and assigns 

its memory address to the identifier ’V’ in the environment 
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Functions 
•  Compute the factorial function: 
•  Start with the mathematical definition 

  declare 
  fun {Fact N} 
      if N==0 then 1 else N*{Fact N-1} end 
  end 

•  Fact is declared in the environment 
•  Try large factorial {Browse {Fact 100}} 
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Composing functions 
•  Combinations of r items taken from n. 
•  The number of subsets of size r taken from a set of size n 
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  declare 
  fun {Comb N R} 
     {Fact N} div ({Fact R}*{Fact N-R}) 
  end 

•  Example of functional abstraction 

Comb 

Fact Fact Fact 
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Structured data (lists) 
•  Calculate Pascal triangle 
•  Write a function that calculates the nth row as 

one structured value 
•  A list is a sequence of elements: 

 [1 4 6 4 1] 
•  The empty list is written nil 
•  Lists are created by means of ”|”  (cons) 

  declare 
  H=1 
  T = [2 3 4 5] 
  {Browse H|T}  % This will show [1 2 3 4 5] 

1 
1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 
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Lists (2) 

•  Taking lists apart (selecting components) 
•  A cons has two components: a head, and a tail 

  declare  L = [5 6 7 8] 
  L.1 gives 5 
  L.2 give [6 7 8] 

‘|’ 

‘|’ 

‘|’ 

6 

7 

8 nil 
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Pattern matching 

•  Another way to take a list apart is by use of pattern 
matching with a case instruction 
 

  case L of H|T then {Browse H} {Browse T}  
    else {Browse ‘empty list’}  
  end 
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Functions over lists 

•  Compute the function {Pascal N} 
•  Takes an integer N, and returns the 

Nth row of a Pascal triangle as a list 
1.  For row 1, the result is [1] 
2.  For row N, shift to left row N-1 and 

shift to the right row N-1 
3.  Align and add the shifted rows 

element-wise to get row N 

1 
1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

(0) (0) 

[0 1 3 3 1] 
 
[1 3 3 1 0] 

Shift right 

Shift left 
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Functions over lists (2) 

declare 
fun {Pascal N} 
   if N==1 then [1] 
   else 
      {AddList 
       {ShiftLeft {Pascal N-1}} 
       {ShiftRight {Pascal N-1}}} 
   end 
end 

AddList 

ShiftLeft ShiftRight 

Pascal N-1 Pascal N-1 

Pascal N 
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Functions over lists (3) 

fun {ShiftLeft L} 
   case L of H|T then 
      H|{ShiftLeft T} 
   else [0] 
   end 
end 
 
fun {ShiftRight L}  0|L end 

fun {AddList L1 L2} 
   case L1 of H1|T1 then 
      case L2 of H2|T2 then 

  H1+H2|{AddList T1 T2} 
      end 
   else nil end 
end 
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Top-down program development 
•  Understand how to solve the problem by hand 
•  Try to solve the task by decomposing it to simpler tasks 
•  Devise the main function (main task) in terms of suitable 

auxiliary functions (subtasks) that simplify the solution 
(ShiftLeft, ShiftRight and AddList) 

•  Complete the solution by writing the auxiliary functions 
•  Test your program bottom-up:  auxiliary functions first. 
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Is your program correct? 
•  “A program is correct when it does what we would like it 

to do” 
•  In general we need to reason about the program: 
•  Semantics for the language: a precise model of the 

operations of the programming language 
•  Program specification: a definition of the output in terms 

of the input (usually a mathematical function or relation) 
•  Use mathematical techniques to reason about the program, 

using programming language semantics 
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Mathematical induction 
•  Select one or more inputs to the function 
•  Show the program is correct for the simple cases (base 

cases) 
•  Show that if the program is correct for a given case, it is 

then correct for the next case. 
•  For natural numbers, the base case is either 0 or 1, and for 

any number n the next case is n+1 
•  For lists, the base case is nil, or a list with one or a few 

elements, and for any list T the next case is H|T 
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Correctness of factorial 

fun {Fact N} 
   if N==0 then 1 else N*{Fact N-1} end 
end 
 
•  Base Case N=0: {Fact 0} returns 1 
•  Inductive Case N>0: {Fact N} returns N*{Fact N-1}  assume 

{Fact N-1} is correct, from the spec we see that {Fact N} is 
N*{Fact N-1}  
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Multiple accumulators 
•  Consider a stack machine for evaluating 

arithmetic expressions 
•  Example: (1+4)-3 
•  The machine executes the following 

instructions 
 push(1) 
push(4) 
plus 
push(3) 
minus  

 4  
 1  

 5   3  
 5  

 2  
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Multiple accumulators (2) 
•  Example: (1+4)-3 
•  The arithmetic expressions are represented as trees: 

 minus(plus(1 4) 3) 
•  Write a procedure that takes arithmetic expressions 

represented as trees and output a list of stack machine 
instructions and counts the number of instructions 

  proc {ExprCode Expr Cin Cout Nin Nout} 

•  Cin: initial list of instructions 
•  Cout: final list of instructions 
•  Nin: initial count 
•  Nout: final count 



C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18 

Multiple accumulators (3) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then C1 N1 in 
      C1 = plus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] minus(Expr1 Expr2) then C1 N1 in 
      C1 = minus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 
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Multiple accumulators (4) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then C1 N1 in 
      C1 = plus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] minus(Expr1 Expr2) then C1 N1 in 
      C1 = minus|C0 
      N1 = N0 + 1 
      {SeqCode [Expr2 Expr1] C1 C N1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 

proc {SeqCode Es C0 C N0 N} 
   case Es 
   of nil then C = C0 N = N0 
   [] E|Er then N1 C1 in 
      {ExprCode E C0 C1 N0 N1} 
      {SeqCode Er C1 C N1 N} 
   end 
end 
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Shorter version (4) 
proc {ExprCode Expr C0 C N0 N} 
   case Expr 
   of plus(Expr1 Expr2) then 
      {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N} 
   [] minus(Expr1 Expr2) then 
  {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N} 
   [] I andthen {IsInt I} then 
      C = push(I)|C0 
      N = N0 + 1 
   end 
end 

proc {SeqCode Es C0 C N0 N} 
   case Es 
   of nil then C = C0 N = N0 
   [] E|Er then N1 C1 in 
      {ExprCode E C0 C1 N0 N1} 
      {SeqCode Er C1 C N1 N} 
   end 
end 
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Functional style (4) 
fun {ExprCode Expr t(C0 N0) } 
   case Expr 
   of plus(Expr1 Expr2) then 
      {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)} 
   [] minus(Expr1 Expr2) then 
  {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)} 
   [] I andthen {IsInt I} then 
      t(push(I)|C0 N0 + 1) 
   end 
end 

fun {SeqCode Es T} 
   case Es 
   of nil then T 
   [] E|Er then  

 T1 = {ExprCode E T} in 
      {SeqCode Er T1} 
   end 
end 
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Complexity 
•  Pascal runs very slow,  

try {Pascal 24} 
•  {Pascal 20} calls: {Pascal 19} twice, 

{Pascal 18} four times, {Pascal 17} 
eight times, ..., {Pascal 1} 219 times 

•  Execution time of a program up to a 
constant factor is called the 
program’s time complexity. 

•  Time complexity of {Pascal N} is 
proportional to 2N (exponential) 

•  Programs with exponential time 
complexity are impractical 

declare 
fun {Pascal N} 
   if N==1 then [1] 
   else 
      {AddList 
       {ShiftLeft {Pascal N-1}} 
       {ShiftRight {Pascal N-1}}} 
   end 
end 
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fun {FastPascal N} 
   if N==1 then [1] 
   else 
        local L in 

    L={FastPascal N-1} 
    {AddList {ShiftLeft L} {ShiftRight L}} 
 end 

   end 
end 

Faster Pascal 
•  Introduce a local variable L 
•  Compute {FastPascal N-1} only once 
•  Try with 30 rows. 
•  FastPascal is called N times, each 

time a list on the average of size N/2 
is processed 

•  The time complexity is proportional 
to N2 (polynomial) 

•  Low order polynomial programs are 
practical.  
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Lazy evaluation 
•  The functions written so far are evaluated eagerly (as soon 

as they are called) 
•  Another way is lazy evaluation where a computation is 

done only when the result is needed 

declare 
fun lazy {Ints N} 
   N|{Ints N+1} 
end 

•  Calculates the infinite list: 
0 | 1 | 2 | 3 | ... 
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Lazy evaluation (2) 
•  Write a function that computes as 

many rows of Pascal’s triangle as 
needed 

•  We do not know how many 
beforehand 

•  A function is lazy if it is evaluated 
only when its result is needed 

•  The function PascalList is evaluated 
when needed 

fun lazy {PascalList Row} 
   Row | {PascalList  
                {AddList  

      {ShiftLeft Row} 
      {ShiftRight Row}}} 

end 
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Lazy evaluation (3) 
•  Lazy evaluation will avoid 

redoing work if you decide first 
you need the 10th row and later 
the 11th row 

•  The function continues where it 
left off 

declare 
L = {PascalList [1]} 
{Browse L} 
{Browse L.1} 
{Browse L.2.1} 

L<Future> 
[1] 
[1 1] 
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Higher-order programming 
•  Assume we want to write another Pascal function, which 

instead of adding numbers, performs exclusive-or on them 
•  It calculates for each number whether it is odd or even 

(parity) 
•  Either write a new function each time we need a new 

operation, or write one generic function that takes an 
operation (another function) as argument 

•  The ability to pass functions as arguments, or return a 
function as a result is called higher-order programming 

•  Higher-order programming is an aid to build generic 
abstractions 
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Variations of Pascal 
•  Compute the parity Pascal triangle 

1 
1 1 

1 2 1 

1 3 3 1 
1 4 6 4 1 

1 
1 1 

1 0 1 

1 1 1 1 
1 0 0 0 1 

fun {Xor X Y} if X==Y then 0 else 1 end end 
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Higher-order programming 
fun {GenericPascal Op N} 
   if N==1 then [1] 
   else L in L = {GenericPascal Op N-1} 
      {OpList  Op {ShiftLeft L} {ShiftRight L}} 
   end 
end 
fun {OpList Op L1 L2}  

 case L1 of H1|T1 then 
  case L2 of H2|T2 then 
         {Op H1 H2}|{OpList Op T1 T2} 
  end 

    else nil end 
end 

fun {Add N1 N2} N1+N2 end 
fun {Xor N1 N2}  

 if N1==N2 then 0 else 1 end 
end 
 
fun {Pascal N} {GenericPascal Add N} end 
fun {ParityPascal N}  

 {GenericPascal Xor N}  
end 
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Concurrency 
•  How to do several things at once 
•  Concurrency: running several activities 

each running at its own pace 
•  A thread is an executing sequential 

program 
•  A program can have multiple threads by 

using the thread instruction 
•  {Browse 99*99} can immediately respond 

while Pascal is computing 

thread 
   P in 
   P = {Pascal 21} 
   {Browse P} 
end 
{Browse 99*99} 
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Dataflow 

•  What happens when multiple threads try to 
communicate? 

•  A simple way is to make communicating 
threads synchronize on the availability of data 
(data-driven execution) 

•  If an operation tries to use a variable that is not 
yet bound it will wait 

•  The variable is called a dataflow variable 

+ 

* * 

X Y Z U 
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Dataflow (II) 

•  Two important properties of dataflow 
–  Calculations work correctly independent 

of how they are partitioned between 
threads (concurrent activities) 

–  Calculations are patient, they do not 
signal error; they wait for data 
availability 

•  The dataflow property of variables 
makes sense when programs are 
composed of multiple threads  

declare X 
thread 
   {Delay 5000} X=99 
End 
{Browse ‘Start’} {Browse X*X} 

declare X 
thread 
   {Browse ‘Start’} {Browse X*X} 
end 
{Delay 5000} X=99 
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Exercises 
30. Prove the correctness of AddList and ShiftLeft. 
31. CTM Exercise 1.18.5. (page 24) 
32. CTM Exercise 1.18.6. (page 24) 

c) Change GenericPascal so that it also receives a number to use as an 
identity for the operation Op: {GenericPascal Op I N}.  For 
example, you could then use it as: 
  {GenericPascal Add 0 N}, or 
  {GenericPascal fun {$ X Y} X*Y end 1 N} 

33. Prove that the alternative version of Pascal triangle (not 
using ShiftLeft) is correct.  Make AddList and OpList 
commutative. 

34. When combining concurrency and dataflow behavior, do 
you ever get non-determinism?  Explain why or why not. 


